1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Passive magnetic shielding in static gradient fields
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4873714
1.
1. J. Bork, H. D. Hahlblohm, R. Klein, and A. Schnabel, “The 8-layered magnetically shielded room of the PTB: Design and construction,” Proceedings of the 12th International Conference on Biomagnetism (2000).
2.
2. D. Cohen, U. Schläpfer, S. P. Ahlfors, M. S. Hämäläinen, and E. Halgren, “New six-layer magnetically-shielded room for MEG,” Proceedings of the 13th International Conference on Biomagnetism (2002).
3.
3. T. Brys et al., “Magnetic field stabilization for magnetically shielded volumes by external field coils,” Nucl. Instrum. Meth. A 554, 527539 (2005).
http://dx.doi.org/10.1016/j.nima.2005.08.040
4.
4. M. D. Swallows, T. H. Loftus, W. C. Griffith, B. R. Heckel, E. N. Fortson, and M. V. Romalis, “Techniques used to search for a permanent electric dipole moment of the 199Hg atom and the implications for violation,” Phys. Rev. A 87, 012102 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.012102
5.
5. S. Groeger, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239247 (2006).
http://dx.doi.org/10.1140/epjd/e2006-00037-y
6.
6. D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3, 227 (2007).
http://dx.doi.org/10.1038/nphys566
7.
7. T. W. Kornack, S. J. Smullin, S.-K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90, 223501 (2007).
http://dx.doi.org/10.1063/1.2737357
8.
8. J. M. Pendlebury et al., “Geometric-phase-induced false electric dipole moment signals for particles in traps,” Phys. Rev. A 70, 032102 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.032102
9.
9. S. K. Lamoreaux and R. Golub, “Detailed discussion of a linear electric field frequency shift induced in confined gases by a magnetic field gradient: Implications for neutron electric-dipole-moment experiments,” Phys. Rev. A 71, 032104 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.032104
10.
10. P. G. Harris and J. M. Pendlebury, “Dipole-field contributions to geometric-phase-induced false electric-dipole-moment signals for particles in traps,” Phys. Rev. A 73, 014101 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.014101
11.
11. A. L. Barabanov, R. Golub, and S. K. Lamoreaux, “Electric dipole moment searches: Effect of linear electric field frequency shifts induced in confined gases,” Phys. Rev. A 74, 052115 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.052115
12.
12. A. P. Wills, “On the magnetic shielding effect of trilamellar spherical and cylindrical shells,” The Physical Review 9, 193213 (1899).
13.
13. T. E. Sterne, “Multi-lamellar cylindrical magnetic shields,” Review of Scientific Instruments 6, 324326 (1935).
http://dx.doi.org/10.1063/1.1751884
14.
14. W. G. Wadey, “Magnetic shielding with multiple cylindrical shells,” Review of Scientific Instruments 27, 910916 (1956).
http://dx.doi.org/10.1063/1.1715413
15.
15. F. Schweizer, “Magnetic shielding factors of a system of concentric spherical shells,” Journal of Applied Physics 33, 10011003 (1962).
http://dx.doi.org/10.1063/1.1777151
16.
16. A. K. Thomas, “Magnetic Shielded Enclosure Design in the DC and VLF Region,” IEEE Transactions on Electromagnetic Compatibility 10, 142152 (1968).
http://dx.doi.org/10.1109/TEMC.1968.302922
17.
17. A. Mager, “Magnetic shields,” IEEE Transactions on Magnetics 6, 6775 (1970).
http://dx.doi.org/10.1109/TMAG.1970.1066714
18.
18. S. M. Freake and T. L. Thorp, “Shielding of low magnetic fields with multiple cylindrical shields,” Review of Scientific Instruments 42, 14111413 (1971).
http://dx.doi.org/10.1063/1.1684894
19.
19. D. U. Gubser, S. A. Wolf, and J. E. Cox, “Shielding of longitudinal magnetic fields with thin, closely spaced, concentric cylinders of high permeability material,” Review of Scientific Instruments 50, 751756 (1979).
http://dx.doi.org/10.1063/1.1135915
20.
20. D. Dubbers, “Simple formula for multiple mu-metal shields,” Nuclear Instruments and Methods in Physics Rearch A243, 511517 (1986).
http://dx.doi.org/10.1016/0168-9002(86)90989-7
21.
21. T. J. Sumner, J. M. Pendlebury, and K. F. Smith, “Conventional magnetic shielding,” J. Phys. D: Appl. Phys. 20, 10951101 (1987).
http://dx.doi.org/10.1088/0022-3727/20/9/001
22.
22. J. F. Hoburg, “Principles of quasistatic magnetic shielding with cylindrical and spherical shields,” IEEE Transactions on Electromagnetic Compatibility 37, 574579 (1995).
http://dx.doi.org/10.1109/15.477342
23.
23. L. Urankar and R. Oppelt, “Design criterions for active shielding of inhomogeneous magnetic fields for biomagnetic applications,” IEEE Transactions on Biomedical Engineering 43, 697707 (1996).
http://dx.doi.org/10.1109/10.503177
24.
24. E. A. Burt and C. R. Ekstrom, “Optimal three-layer cylindrical magnetic shield sets for scientific applications,” Review of Scientific Instruments 73, 26992704 (2002).
http://dx.doi.org/10.1063/1.1487892
25.
25. E. Paperno, S. Peliwal, M. V. Romalis, and A. Plotkin, “Optimum shell separation for closed axial cylindrical magnetic shields,” Journal of Applied Physics 97, 10Q104 (2005).
http://dx.doi.org/10.1063/1.1854254
26.
26. R. J. Hanson and F. M. Pipkin, “Magnetically Shielded Solenoid with Field of High Homogeneity,” Review of Scientific Instruments 36, 179188 (1965).
http://dx.doi.org/10.1063/1.1719514
27.
27. R. H. Lambert and C. Uphoff, “Magnetically shielded solenoid with field of high homogeneity,” Review of Scientific Instruments 46, 337 (1975).
http://dx.doi.org/10.1063/1.1134178
28.
28. T. J. Sumner, “Progress towards a new experiment to search for the electric dipole moment of the neutron using ultra-cold neutrons,” ILL Int. Sci. Rep. 80SU09S (1980).
29.
29. T. J. Sumner, “A calculation of the effect of a coaxial superconducting shield on the magnetic field distribution of an enclosed coaxial solenoid,” J. Phys. D: Appl. Phys. 20, 692696 (1987).
http://dx.doi.org/10.1088/0022-3727/20/6/003
30.
30. M. Hosoya and E. Goto, “Coils for generating uniform fields in a cylindrical ferromagnetic shield,” Review of Scientific Instruments 62, 24722475 (1991).
http://dx.doi.org/10.1063/1.1142267
31.
31. R. Turner and R. M. Bowley, “Passive screening of switched magnetic field gradients,” J. Phys. E: Sci. Instrum. 19, 876879 (1986).
http://dx.doi.org/10.1088/0022-3735/19/10/023
32.
32. K. W. Rigby, “Design of magnets inside cylindrical superconducting shields,” Review of Scientific Instruments 59, 156158 (1988).
http://dx.doi.org/10.1063/1.1139992
33.
33. C. P. Bidinosti, I. S. Kravchuk, and M. E. Hayden, “Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for low-field NMR and MRI,” Journal of Magnetic Resonance 177, 3143 (2005).
http://dx.doi.org/10.1016/j.jmr.2005.07.003
34.
34. C. P. Bidinosti and M. E. Hayden, “Selective passive shielding and the Faraday bracelet,” Applied Physics Letters 93, 174102 (2008).
http://dx.doi.org/10.1063/1.2998607
35.
35. W. R. Smythe, Static and Dynamic Electricity, 2nd ed. (McGraw-Hill, New York, 1950). See §7.12 and §7.17.
36.
36. V. C. A. Ferraro, Electromagnetic Theory (Athalone Press, London, 1967). See §186, §235, and §236.
37.
37. D. E. Lobb, “Properties of some useful two-dimensional magnetic fields,” Nuclear Instruments and Methods 64, 251267 (1968).
http://dx.doi.org/10.1016/0029-554X(68)90161-4
38.
38. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
39.
39. H. Kaden, Wirbelströme und Schirmung in der Nachrichtentechnik, 2nd ed. (Springer-Verlag, Berlin, 1959).
40.
40. A. Nussbaum, Electromagnetic Theory for Engineers and Scientists (Prentice-Hall, Englewood Cliffs, 1965).
41.
41. E. Durand, Magnétostatique, (Masson et Cie, Paris, 1968).
42.
42. F. Roméo and D. I. Hoult, “Magnet field profiling: analysis and correcting coil design,” Magnetic Resonance in Medicine 1, 4465 (1984).
http://dx.doi.org/10.1002/mrm.1910010107
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4873714
Loading
/content/aip/journal/adva/4/4/10.1063/1.4873714
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4873714
2014-04-25
2014-12-28

Abstract

The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4873714.html;jsessionid=1r3mb6gsnimc8.x-aip-live-02?itemId=/content/aip/journal/adva/4/4/10.1063/1.4873714&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Passive magnetic shielding in static gradient fields
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4873714
10.1063/1.4873714
SEARCH_EXPAND_ITEM