1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effect of Dzyaloshinskii–Moriya interaction on magnetic vortex
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4874135
1.
1. T. Moriya, Phys. Rev. 120, 91 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
2.
2. I. E. Dzialoshinskii, Sov. Phys. 5, 1259 (1957).
3.
3. A. Tonomura, X. Z. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura, Nano. Lett. 12, 1673 (2012).
http://dx.doi.org/10.1021/nl300073m
4.
4. X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2011).
http://dx.doi.org/10.1038/nmat2916
5.
5. H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A. Leonov, and A. N. Bogdanov, Phys. Rev. Lett. 107, 127203 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.127203
6.
6. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).
http://dx.doi.org/10.1038/nature09124
7.
7. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
http://dx.doi.org/10.1126/science.1166767
8.
8. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713 (2011).
http://dx.doi.org/10.1038/nphys2045
9.
9. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007).
http://dx.doi.org/10.1038/nature05802
10.
10. G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N. Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Phys. Rev. Lett. 110, 177204 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177204
11.
11. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156603
12.
12. M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. Lett. 102, 186601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.186601
13.
13. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.186602
14.
14. X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nat. Commun. 3, 988 (2012).
http://dx.doi.org/10.1038/ncomms1990
15.
15. F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010).
http://dx.doi.org/10.1126/science.1195709
16.
16. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4, 1463 (2013).
http://dx.doi.org/10.1038/ncomms2442
17.
17. H. F. Du, W. Ning, M. L. Tian, and Y. H. Zhang, Phys. Rev. B. 87, 014401 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.014401
18.
18. A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, Europhys. Lett. 100, 570025 (2012).
http://dx.doi.org/10.1209/0295-5075/100/57002
19.
19. A. B. Butenko, A. A. Leonov, A. N. Bogdanov, and U. K. Rößler, Phys. Rev. B. 80, 134410 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.134410
20.
20. H. Y. Kwon, S. P. Kang, Y. Z. Wu, and C. Won, J. Appl. Phys. 80,133911 (2013).
http://dx.doi.org/10.1063/1.4799401
21.
21. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002).
http://dx.doi.org/10.1126/science.1075302
22.
22. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).
http://dx.doi.org/10.1126/science.289.5481.930
23.
23. S. B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, and H. A. Padmore, Science 304, 420 (2004).
http://dx.doi.org/10.1126/science.1095068
24.
24. M. Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani, and T. Ono, Nat. Commun. 3, 983 (2012).
http://dx.doi.org/10.1038/ncomms1978
25.
25. A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
http://dx.doi.org/10.1063/1.367113
26.
26. A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophysical Research - Solid Earth. 98, 9551 (1993).
http://dx.doi.org/10.1029/93JB00694
27.
27. O. A. Tretiakov and A. Abanov, Phys. Rev. Lett. 105, 157201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.157201
28.
28. M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.2a5, http://math.nist.gov/oommf.
29.
29. S. H. Jun, J. H. Shim, S. K. Oh, S. C. Yu, D. H. Kim, B. Mesler, and P. Fischer, Appl. Phys. Lett. 95, 142509 (2009).
http://dx.doi.org/10.1063/1.3243985
30.
30. M. J. Donahue and D. G. Porter, Physica B 343, 177 (2004).
http://dx.doi.org/10.1016/j.physb.2003.08.090
31.
31. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184422
32.
32. A. Thiaville, J. M. García, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.094410
33.
33. R. K. Dumas, T. Gredig, C. P. Li, I. K. Schuller, and K. Liu, Phys. Rev. B. 80, 0144161 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014416
34.
34. L. Sun, R. X. Cao, B. F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, and H. F. Ding, Phys. Rev. Lett. 110, 167201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.167201
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4874135
Loading
/content/aip/journal/adva/4/4/10.1063/1.4874135
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4874135
2014-04-28
2014-10-01

Abstract

The effect of the Dzyaloshinskii–Moriya (DM) interaction on the vortex in magnetic microdisk was investigated by micro-magnetic simulation based on the Landau–Lifshitz–Gilbert equation. Our results show that the DM interaction modifies the size of the vortex core, and also induces an out-of-plane magnetization component at the edge and inside the disk. The DM interaction can destabilizes one vortex handedness, generate a bias field to the vortex core and couple the vortex polarity and chirality. This DM-interaction-induced coupling can therefore provide a new way to control vortex polarity and chirality.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4874135.html;jsessionid=edkheptq2gimt.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4874135&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of Dzyaloshinskii–Moriya interaction on magnetic vortex
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4874135
10.1063/1.4874135
SEARCH_EXPAND_ITEM