1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The effects of temperature and vacancies on dynamics of crack in graphene sheet
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4874296
1.
1. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
2.
2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
3.
3. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
4.
4. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
5.
5. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
6.
6. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Appl. Phys. Lett. 92, 263302 (2008).
http://dx.doi.org/10.1063/1.2924771
7.
7. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
http://dx.doi.org/10.1038/nature04969
8.
8. M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano 3, 3884 (2009).
http://dx.doi.org/10.1021/nn9010472
9.
9. M. A. Rafiee, W. Lu, A. V. Thomas, A. Zandiatashbar, J. Rafiee, J. M. Tour, and N. A. Koratkar, ACS Nano 4, 7415 (2010).
http://dx.doi.org/10.1021/nn102529n
10.
10. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
11.
11. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).
http://dx.doi.org/10.1116/1.2789446
12.
12. F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064120
13.
13. G. Van Lier, C. V. Alsenoy, V. V. Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00764-8
14.
14. H. Zhao, K. Min, and N. R. Aluru, Nano Lett. 9, 3012 (2009).
http://dx.doi.org/10.1021/nl901448z
15.
15. H. Zhao and N. R. Aluru, J. Appl. Phys. 108, 064321 (2010).
http://dx.doi.org/10.1063/1.3488620
16.
16. A. Sakhaee-Pour, Solid State Commun. 149, 91 (2009).
http://dx.doi.org/10.1016/j.ssc.2008.09.050
17.
17. K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. Lett. 102, 046808 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.046808
18.
18. J. Tsai and J. Tu, Mater. Des. 31, 194 (2010).
http://dx.doi.org/10.1016/j.matdes.2009.06.032
19.
19. M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, Computational Materials Science 54, 236 (2012).
http://dx.doi.org/10.1016/j.commatsci.2011.10.032
20.
20. N. Gorjizadeh, A. A. Farajian, Y. Kawazoe, Nanotechnology 20, 015201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/1/015201
21.
21. M. Neek-Amal and F. M. Peeters, Applied. Phys. Lett. 84, 1636 (2012).
22.
22. S. T. Sachin, S. Huang, H. Y. Yuan, J. Rencis, T. Zhu, and S. Zhang, Chem.Phys. Lett. 494, 218 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.090
23.
23. J. L. Tsai, S. H. Tzeng, and Y. J. Tzou, International Journal of Solids and Structures 47, 503 (2010).
http://dx.doi.org/10.1016/j.ijsolstr.2009.10.017
24.
24. M. Xu, A. Tabarraei, J. Paci, J. Oswald, and T. Belytschko, Int. J. Frac. 173, 163 (2012).
http://dx.doi.org/10.1007/s10704-011-9675-x
25.
25. M.-Q. Le, R. C. Batra, Computational Materials Science 69, 381388 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.11.057
26.
26. M. Xu, A. Tabarraei, J. T. Paci, J. Oswald, T. Belytschko, Int. J. Fract. 173, 163173 (2012).
http://dx.doi.org/10.1007/s10704-011-9675-x
27.
27. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
28.
28. S. Plimpton, J. Comp. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
29.
29. S. Sandeep, M. Neek-Amal, S. Costamagna and F. M. Peeters, Phys. Rev. B 87, 184106 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184106
30.
30. Emiliano Cadelano, Pier Luca Palla, Stefano Giordano, and Luciano Colombo, Phys. Rev. Lett 102, 235502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.235502
31.
31. R. Jack, D. Sen, and M. J. Buehler, Journal of Computational and Theoretical NanoScience, 7 (2010).
http://dx.doi.org/10.1166/jctn.2010.1366
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4874296
Loading
/content/aip/journal/adva/4/5/10.1063/1.4874296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4874296
2014-05-13
2014-07-25

Abstract

Crack propagation in a defected graphene sheet is investigated at finite temperature using molecular dynamics simulation. The effects of several initial cracks, temperature and different percentage of vacancies are considered. It is found that i) the critical load, which is a criteria for crack propagation, is larger when the load is applied on the zigzag direction, ii) the critical load decreases with increasing temperature, iii) a hole in the center of the sheet and the presence of randomly distributed vacancies reduce the critical load giving different crack propagation trajectory. Our new results would help to understand the crack propagation phenomena in defected graphene at finite temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4874296.html;jsessionid=47t7wmigswh45.x-aip-live-02?itemId=/content/aip/journal/adva/4/5/10.1063/1.4874296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The effects of temperature and vacancies on dynamics of crack in graphene sheet
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4874296
10.1063/1.4874296
SEARCH_EXPAND_ITEM