1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
DC current induced metal-insulator transition in epitaxial Sm0.6Nd0.4NiO3/LaAlO3 thin film
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4874642
1.
1. C. H. Ahn, A. Bhattacharya, M. Di Ventra , J. N. Eckstein, J. N. Eckstein, M. E. Gershenson, M. E. Gershenson, I. H. Inoue, J. Mannhart, Andrew J. Millis, A. F. Morpurgo, D. Natelson, and Jean-Marc Triscone, Rev. Mod. Phys. 78, 1185 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1185
2.
2. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
3.
3. C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).
http://dx.doi.org/10.1038/nature01878
4.
4. M. K. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, Nature 487, 345 (2012).
http://dx.doi.org/10.1038/nature11231
5.
5. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Mater. 7, 855 (2008).
http://dx.doi.org/10.1038/nmat2298
6.
6. T. Yajima, Y. Hikita, and H. Y. Hwang, Nat. Mater. 10, 198 (2011).
http://dx.doi.org/10.1038/nmat2946
7.
7. G. Catalan, Phase Transitions 81, 729 (2008).
http://dx.doi.org/10.1080/01411590801992463
8.
8. I. V. Nikulin, M. A. Novojilova, A. R. Kaulb, S. N. Mudretsovab, and S. V. Kondrashov, Mater. Res. Bull. 39, 775791 (2004).
http://dx.doi.org/10.1016/j.materresbull.2004.02.005
9.
9. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337367 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
10.
10. J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, Nat. Commun. 4, 2676 (2013).
11.
11. R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J. M. Triscone, Adv. Mater. 22, 5517 (2010).
http://dx.doi.org/10.1002/adma.201003241
12.
12. S. Asanuma, P.-H. Xiang, H. Yamada, H. Sato, I. H. Inoue, H. Akoh, A. Sawa, K. Ueno, H. Shimotani, H. Yuan, M. Kawasaki, and Y. Iwasa, Appl. Phys. Lett. 97, 142110 (2010).
http://dx.doi.org/10.1063/1.3496458
13.
13. S. D. Ha, B. Viswanath, and S. Ramanathan, J. Appl. Phys. 111, 124501 (2012).
http://dx.doi.org/10.1063/1.4729490
14.
14. A. Ambrosini and J. F. Hamet, Appl. Phys. Lett. 82, 727 (2003).
http://dx.doi.org/10.1063/1.1541116
15.
15. V. Dobrosavljevic, N. Trivedi, and J. M. Valles Jr., Conductor Insulator Quantum Phase Transitions. (Oxford University Press, 2012).
16.
16. V. F. Gantmakher, Electrons and Disorder in Solids. (Oxford University Press, 2005).
17.
17. F. Capon, P. Ruello, J.-F. Bardeau, P. Simon, P. Laffez, B. Dkhil, L. Reversat, K. Galicka, and A. Ratuszna, J. Phys.: Condens. Matter 17, 1137 (2005).
http://dx.doi.org/10.1088/0953-8984/17/7/007
18.
18. G. Catalan, R. M. Bowman, and J. M. Gregg, Phys. Rev. B 62, 7892 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7892
19.
19. Y. Kumar, R. J. Choudhary, and R. Kumar, J. Appl. Phys. 112, 073718 (2012).
http://dx.doi.org/10.1063/1.4758306
20.
20. T. Wu, S. B. Ogale, J. E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R. L. Greene, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 86, 5998 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5998
21.
21. P. Padhan, W. Prellier, Ch. Simon, and R. C. Budhani, Phys. Rev. B. 70, 134403 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134403
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4874642 for estimation of temperature rise from Joule heating induced by DC current. [Supplementary Material]
23.
23. J. F. Wang, L. P. Chen, Y. C. Jiang, and J. Gao, J. Appl. Phys. 113, 17E151 (2013).
http://dx.doi.org/10.1063/1.4800841
24.
24. F. X. Hu, J. Gao, and X. S. Wu, Phys. Rev. B. 72, 064428 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064428
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4874642
Loading
/content/aip/journal/adva/4/5/10.1063/1.4874642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4874642
2014-05-02
2014-10-02

Abstract

The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial SmNdNiO (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 × 109 A•m−2 to 4.9 × 109 A•m−2. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4874642.html;jsessionid=9rtj6puvkgor.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4874642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: DC current induced metal-insulator transition in epitaxial Sm0.6Nd0.4NiO3/LaAlO3 thin film
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4874642
10.1063/1.4874642
SEARCH_EXPAND_ITEM