Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. H. Ahn, A. Bhattacharya, M. Di Ventra , J. N. Eckstein, J. N. Eckstein, M. E. Gershenson, M. E. Gershenson, I. H. Inoue, J. Mannhart, Andrew J. Millis, A. F. Morpurgo, D. Natelson, and Jean-Marc Triscone, Rev. Mod. Phys. 78, 1185 (2006).
2. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
3. C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).
4. M. K. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, Nature 487, 345 (2012).
5. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Mater. 7, 855 (2008).
6. T. Yajima, Y. Hikita, and H. Y. Hwang, Nat. Mater. 10, 198 (2011).
7. G. Catalan, Phase Transitions 81, 729 (2008).
8. I. V. Nikulin, M. A. Novojilova, A. R. Kaulb, S. N. Mudretsovab, and S. V. Kondrashov, Mater. Res. Bull. 39, 775791 (2004).
9. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337367 (2011).
10. J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, Nat. Commun. 4, 2676 (2013).
11. R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J. M. Triscone, Adv. Mater. 22, 5517 (2010).
12. S. Asanuma, P.-H. Xiang, H. Yamada, H. Sato, I. H. Inoue, H. Akoh, A. Sawa, K. Ueno, H. Shimotani, H. Yuan, M. Kawasaki, and Y. Iwasa, Appl. Phys. Lett. 97, 142110 (2010).
13. S. D. Ha, B. Viswanath, and S. Ramanathan, J. Appl. Phys. 111, 124501 (2012).
14. A. Ambrosini and J. F. Hamet, Appl. Phys. Lett. 82, 727 (2003).
15. V. Dobrosavljevic, N. Trivedi, and J. M. Valles Jr., Conductor Insulator Quantum Phase Transitions. (Oxford University Press, 2012).
16. V. F. Gantmakher, Electrons and Disorder in Solids. (Oxford University Press, 2005).
17. F. Capon, P. Ruello, J.-F. Bardeau, P. Simon, P. Laffez, B. Dkhil, L. Reversat, K. Galicka, and A. Ratuszna, J. Phys.: Condens. Matter 17, 1137 (2005).
18. G. Catalan, R. M. Bowman, and J. M. Gregg, Phys. Rev. B 62, 7892 (2000).
19. Y. Kumar, R. J. Choudhary, and R. Kumar, J. Appl. Phys. 112, 073718 (2012).
20. T. Wu, S. B. Ogale, J. E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R. L. Greene, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 86, 5998 (2001).
21. P. Padhan, W. Prellier, Ch. Simon, and R. C. Budhani, Phys. Rev. B. 70, 134403 (2004).
22.See supplementary material at for estimation of temperature rise from Joule heating induced by DC current. [Supplementary Material]
23. J. F. Wang, L. P. Chen, Y. C. Jiang, and J. Gao, J. Appl. Phys. 113, 17E151 (2013).
24. F. X. Hu, J. Gao, and X. S. Wu, Phys. Rev. B. 72, 064428 (2005).

Data & Media loading...


Article metrics loading...



The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial SmNdNiO (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 × 109 A•m−2 to 4.9 × 109 A•m−2. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd