1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
First-principles study of the phase stability and the mechanical properties of W-Ta and W-Re alloys
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4875024
1.
1. M. Ekman, K. Persson, and G. Grimvall, J. Nucl. Mater 278, 273276 (2000).
http://dx.doi.org/10.1016/S0022-3115(99)00241-X
2.
2. J. Pamela, A. Bcoulet, D. Borba, J. L. Boutard, L. Horton, and D. Maisonnier, Fusion Eng. Des 84, 194204 (2009).
http://dx.doi.org/10.1016/j.fusengdes.2009.02.028
3.
3. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, and A. U. Team, J. Nucl. Mater 66–73, 329333 (2004).
4.
4. G. A. Dosovitskiy and S. V. Samoilenkov, Int. J. Thermophys 30, 19311937 (2009).
http://dx.doi.org/10.1007/s10765-009-0660-9
5.
5. Young Do Kim, Nang Lyeom Oh, Sung-Tag Oh, and In-Hyung Moon, Mater. Lett 51, 420424 (2001).
http://dx.doi.org/10.1016/S0167-577X(01)00330-5
6.
6. C. Bercegeay, G. Jomard, and S. Bernard, Phys. Rev. B 77, 104203 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104203
7.
7. P. Turchi, A. Gonis, V. Drchal, and J. Kudrnovsk, Phys. Rev. B 64, 085112 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085112
8.
8. C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, and Z.-K. Liu, Phys. Rev. B 69, 214202 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.214202
9.
9. V. Blum and A. Zunger, Phys. Rev. B 72, 115163 (2005).
10.
10. M. Muzyk, D. Nguyen-Manh, K. J. Kurzydowski, N. L. Baluc, and S. L. Dudarev, Phys. Rev. B 84, 104115 (2001).
http://dx.doi.org/10.1103/PhysRevB.84.104115
11.
11. A. Giannattasio and S. G. Roberts, Philos. Mag 87, 2589 (2007).
http://dx.doi.org/10.1080/14786430701253197
12.
12. A. Zunger, S. H. Wei, L. Ferreira, and J. Bernard, Phys. Rev. Lett 65, 353356 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
13.
13. Su-Huai Wei, Phys. Rev. B 75, 205209 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205209
14.
14. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun 59, 399 (1990).
http://dx.doi.org/10.1016/0010-4655(90)90187-6
15.
15. K. Binder, Phys. Rev. Lett 45, 811 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.811
16.
16. R. Kikuchi, Phys. Rev. B 81, 988 (1951).
http://dx.doi.org/10.1103/PhysRev.81.988
17.
17. D. Shin, R. Arryave, Z.-K. Liu, and A. Van de Walle, Phys. Rev. B 74, 024204 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.024204
18.
18. D. Shin, A. van de Walle, Y. Wang, and Z.-K. Liu, Phys. Rev. B 76, 144204 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144204
19.
19. F. Birch, J. Appl. Phys 9, 279288 (1938).
http://dx.doi.org/10.1063/1.1710417
20.
20. G. R. Barsch, J. Appl. Phys 39, 3780 (1968).
http://dx.doi.org/10.1063/1.1656855
21.
21. R. Krishnan, S. P. Garg, and N. Krishnamurthy, J. Alloy Phase Diagrams 3, 1 (1987).
22.
22. P. Soderlind, O. Eriksson, J. Wills, and A. Boring, Phys. Rev. B 48, 58445851 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.5844
23.
23. K. Einarsdotter, B. Sadigh, G. Grimvall, and V. Ozolins, Phys. Rev. Lett 79, 20732076 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2073
24.
24. M. Manghnani, K. Katahara, and E. Fisher, Phys. Rev. B 9, 1421 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.1421
25.
25. L. Fast, J. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 51, 1743117438 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.17431
26.
26. P. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman, and Z.-K. Liu, Phys. Rev. B 71, 094206 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.094206
27.
27. S. F. Pugh, Philos. Mag 45, 823843 (1954).
28.
28. H. M. Yoo, T. Takasugi, S. Hanada, and O. Izumi, Mater. Trans. JIM 31, 435442 (1990).
http://dx.doi.org/10.2320/matertrans1989.31.435
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4875024
Loading
/content/aip/journal/adva/4/5/10.1063/1.4875024
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4875024
2014-05-02
2014-11-24

Abstract

The phase stability and mechanical properties of binary W Ta and WRe alloys were investigated using the full-potential augmented plane-wave method. The special quasirandom structures(SQSs) of these alloys are mechanically stable due to all of the positive elastic constants and negative binding energies. The binding energies of both the W Ta and WRe alloys also exhibit energy favorable asymmetry toward the W-rich side. In addition, the bulk modulus of the W Ta alloys decrease gradually with the increase of the Ta concentration, while those of the WRe alloys increase gradually with the increase of the Re concentration. Consequently, the bulk modulus of W metal can be improved by doping with Re, implying that the resistance to deformation is enhanced. Based on the mechanical characteristic and Poisson's ratio ν, both the W Ta and WRe alloys are regarded as being ductile materials, the ductility of which improves with the increase of Ta or Re.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4875024.html;jsessionid=1iiil189cqtwy.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4875024&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: First-principles study of the phase stability and the mechanical properties of W-Ta and W-Re alloys
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4875024
10.1063/1.4875024
SEARCH_EXPAND_ITEM