1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4875759
1.
1. F. J. Beck, A. Polman, and K. R. Catchpole, J. Appl. Phys. 105, 114310 (2009).
http://dx.doi.org/10.1063/1.3140609
2.
2. S. Pillai and M. A. Green, Solar Energy Mater Solar Cells. 94, 1481 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.02.046
3.
3. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
4.
4. K. R. Catchpole and A. Polman, Opt. Express. 16, 21793 (2008).
http://dx.doi.org/10.1364/OE.16.021793
5.
5. C. Noguez, J. Phys. Chem. C. 111, 3806 (2007).
http://dx.doi.org/10.1021/jp066539m
6.
6. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B. 107, 668, (2003).
http://dx.doi.org/10.1021/jp026731y
7.
7. A. Moores and F. Goettmann, New J. Chem. 30, 1121 (2006).
http://dx.doi.org/10.1039/b604038c
8.
8. J. S. Sekhon and S. S. Verma, J. Mater. Sci. 47, 1930 (2012).
http://dx.doi.org/10.1007/s10853-011-5983-9
9.
9. M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, Anal Bioanal Chem. 394, 1747 (2009).
http://dx.doi.org/10.1007/s00216-009-2762-4
10.
10. K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B. 110, 19220 (2006).
http://dx.doi.org/10.1021/jp062536y
11.
11. I. O. Sosa, C. Noguez, and R. G. Barrera, J. Phys. Chem. B. 107, 6269 (2003).
http://dx.doi.org/10.1021/jp0274076
12.
12. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 7, 1947 (2007).
http://dx.doi.org/10.1021/nl070648a
13.
13. J. S. Sekhon and S. S. Verma, Plasmonics. 6, 311 (2011).
http://dx.doi.org/10.1007/s11468-011-9206-7
14.
14. N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, J. Phys. Chem. C. 114, 19263 (2010).
http://dx.doi.org/10.1021/jp107637j
15.
15. S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, J. Phys. Chem. C. 117, 19142 (2013).
http://dx.doi.org/10.1021/jp4070856
16.
16. J. S. Sekhon, S. S. Verma, and H. K. Malik, Sensor Lett. 11, 512 (2013).
http://dx.doi.org/10.1166/sl.2013.2923
17.
17. S. Link, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B. 103, 3529 (1999).
http://dx.doi.org/10.1021/jp990387w
18.
18. M. Taner, N. Sayar, I. G. Yulug, and S. Suzer, J. Mater. Chem. 21, 13150 (2011).
http://dx.doi.org/10.1039/c1jm11718a
19.
19. A. Bansal, J. S. Sekhon, and S. S. Verma, Plasmonics. 9, 143 (2014).
http://dx.doi.org/10.1007/s11468-013-9607-x
20.
20. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
21.
21. K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).
http://dx.doi.org/10.1063/1.2988288
22.
22. L. J. Guo, Adv. Mater. 19, 495 (2007).
http://dx.doi.org/10.1002/adma.200600882
23.
23. S. Kim, S. Na, J. Jo, D. Kim, and Y. Nah, Appl. Phys. Lett. 93, 073307 (2008).
http://dx.doi.org/10.1063/1.2967471
24.
24. P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.01.062
25.
25. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebstov, Nanotechnology. 17, 1437 (2006).
http://dx.doi.org/10.1088/0957-4484/17/5/045
26.
26. Y. W. Ma, Z. W. Wu, L. H. Zhang, J. Zhang, G. S. Jian, and S. Pan, Plasmonics. 8, 1351 (2013).
http://dx.doi.org/10.1007/s11468-013-9541-y
27.
27. P. K. Jain, W. Huang, and M. A. El-Sayed, Nano Lett. 7, 2080 (2007).
http://dx.doi.org/10.1021/nl071008a
28.
28. K. Shin, D. H. Kim, S. C. Yeo, and H. M. Lee, Catalysis Today. 185, 94 (2012).
http://dx.doi.org/10.1016/j.cattod.2011.09.022
29.
29. M. A. Tafoughalt and M. Samah, Physica B. 407, 2014 (2012).
http://dx.doi.org/10.1016/j.physb.2012.01.131
30.
30. S. Hayashi and T. Okamoto, J. Phys. D. Appl. Phys. 45, 433001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/43/433001
31.
31. B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A. 11, 1491 (1994).
http://dx.doi.org/10.1364/JOSAA.11.001491
32.
32. B. T. Draine and P. J. Flatau, (2012) http://arxiv.org/abs/1202.3424.
33.
33. B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A. 25, 2693 (2008).
http://dx.doi.org/10.1364/JOSAA.25.002693
34.
34. C. F. Bohren and D. R. Huffman, John Wiley, New York (1998).
35.
35. E. D. Palik, Academic, Boston (1985).
36.
36. Y. Nishijima and S. Akiyama, Opt. Mater. Express. 2, 1226 (2012).
http://dx.doi.org/10.1364/OME.2.001226
37.
37. K. S. Tan and K. Y. Cheong, J. Nanopart. Res. 15, 1537 (2013).
http://dx.doi.org/10.1007/s11051-013-1537-1
38.
38. O. Pena-Rodriguez and U. Pal, J. Opt. Soc. Am. B. 28, 2735 (2011).
http://dx.doi.org/10.1364/JOSAB.28.002735
39.
39. M. Tsuji, S. Hikino, R. Tanabe, M. Matsunaga, and Y. Sano, CrystEngComm. 12, 3900 (2010).
http://dx.doi.org/10.1039/c0ce00064g
40.
40. A. O. Pinchuk and G. C. Schatz, Appl. Phys. B. 93, 31 (2008).
http://dx.doi.org/10.1007/s00340-008-3148-6
41.
41. J. P. Kottmann and O. J. F. Martin, Opt. Lett. 26, 1096 (2001).
http://dx.doi.org/10.1364/OL.26.001096
42.
42. Y. P. Singh, A. Kumar, A. Jain and A. Kapoor, The Open Renewable Energy Journal. 6, 1 (2013).
http://dx.doi.org/10.2174/1876387101306010001
43.
43. P. K. Jain and M. A. El-Sayed, Nano Lett. 8, 4347 (2008).
http://dx.doi.org/10.1021/nl8021835
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4875759
Loading
/content/aip/journal/adva/4/5/10.1063/1.4875759
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4875759
2014-05-07
2014-07-30

Abstract

The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag Au , Au Cu and Ag Cu have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag Cu BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4875759.html;jsessionid=7ef2bld7t0h81.x-aip-live-02?itemId=/content/aip/journal/adva/4/5/10.1063/1.4875759&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4875759
10.1063/1.4875759
SEARCH_EXPAND_ITEM