1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Synthesis, characterization and electrostatic properties of WS2 nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4875915
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3. J. Yu, L. Qin, Y. F. Hao, S. Y. Kuang, X. D. Bai, Y.-M. Chong, W. J. Zhang, and E. Wang, ACS Nano 4(1), 414422 (2010).
http://dx.doi.org/10.1021/nn901204c
4.
4. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83(4), 10571110 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
5.
5. G. L. Hao, X. Qi, Y. D. Liu, Z. Y. Huang, H. X. Li, K. Huang, J. Li, L. W. Yang, and J. X. Zhong, J. Appl. Phys. 111(11), 114312114315 (2012).
http://dx.doi.org/10.1063/1.4729011
6.
6. M. Z. Hossain, S. L. Rumyantsev, K. M. F. Shahil, D. Teweldebrhan, M. Shur, and A. A. Balandin, ACS Nano 5(4), 26572663 (2011).
http://dx.doi.org/10.1021/nn102861d
7.
7. H. L. Zeng, J. F. Dai, W. Yao, D. Xiao, and X. D. Cui, Nat. Nanotechnol. 7(8), 490493 (2012).
http://dx.doi.org/10.1038/nnano.2012.95
8.
8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3), 147150 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
9.
9. S. F. Wu, J. S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Y. Fei, W. G. Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Nat. Phys. 9(3), 149153 (2013).
http://dx.doi.org/10.1038/nphys2524
10.
10. S. F. Wu, C. M. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. D. Xu, ACS Nano 7(3), 27682772 (2013).
http://dx.doi.org/10.1021/nn4002038
11.
11. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Science 317(5834), 100102 (2007).
http://dx.doi.org/10.1126/science.1141483
12.
12. C. Choi, J. Feng, Y. Li, J. Wu, A. Zak, R. Tenne, and H. Dai, Nano Res. 18 (2013).
13.
13. A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Adv. Mater. 25, 899903 (2013).
http://dx.doi.org/10.1002/adma.201203731
14.
14. W. Sik Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. Doo Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, and D. Jena, App. Phys. Lett. 101(1), 013107 (2012).
http://dx.doi.org/10.1063/1.4732522
15.
15. W. J. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, Nano Lett. 13(11), 56275634 (2013).
http://dx.doi.org/10.1021/nl403270k
16.
16. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, Sci. Rep. 3 (2013).
17.
17. H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem. Int. Ed. 122(24), 41534156 (2010).
http://dx.doi.org/10.1002/ange.201000009
18.
18. R. Huirache-Acuña, F. Paraguay-Delgado, M. A. Albiter, L. Alvarez-Contreras, E. M. Rivera-Muñoz, and G. Alonso-Núñez, J. Mater. Sci. 44(16), 43604369 (2009).
http://dx.doi.org/10.1007/s10853-009-3652-z
19.
19. N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Adv. Funct. Mater. 23(44), 55115517 (2013).
http://dx.doi.org/10.1002/adfm.201300760
20.
20. Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. J. Ju, H. T. Yuan, J. P. Shi, T. Gao, D. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui, and Z. F. Liu, ACS Nano 7(10), 89638971 (2013).
http://dx.doi.org/10.1021/nn403454e
21.
21. Y.-H. Lee, L. L. Yu, H. Wang, W. J. Fang, X. Ling, Y. M. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, and C.-S. Chang, Nano Lett. 13(4), 18521857 (2013).
22.
22. S. Tiefenbacher, H. Sehnert, C. Pettenkofer, and W. Jaegermann, Surf. Sci. 318(1–2), L1161L1164 (1994).
http://dx.doi.org/10.1016/0039-6028(94)90331-X
23.
23. A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, Sci. Rep. 3(1755), 18 (2013).
http://dx.doi.org/10.1038/srep01755
24.
24. Z. Q. Wei, D. B. Wang, S. Kim, S.-Y. Kim, Y. K. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science 328(5984), 13731376 (2010).
http://dx.doi.org/10.1126/science.1188119
25.
25. G. L. Hao, Z. Y. Huang, Y. D. Liu, X. Qi, L. Ren, X. Y. Peng, L. W. Yang, X. L. Wei, and J. X. Zhong, AIP Adv. 3(4), 042125 (2013).
http://dx.doi.org/10.1063/1.4802921
26.
26. Y. Li, C.-Y. Xu, and L. Zhen, Appl. Phys. Lett. 102(14), 143110 (2013).
http://dx.doi.org/10.1063/1.4801844
27.
27. G. L. Hao, X. Qi, L. W. Yang, Y. D. Liu, J. Li, L. Ren, F. Sun, and J. X. Zhong, AIP Adv. 2(1), 012114 (2012).
http://dx.doi.org/10.1063/1.3679160
28.
28. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, Nat. Nanotechnol. 8(2), 100103 (2013).
http://dx.doi.org/10.1038/nnano.2012.224
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4875915
Loading
/content/aip/journal/adva/4/5/10.1063/1.4875915
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4875915
2014-05-07
2014-08-21

Abstract

We report the direct growth of atomically thin WS nanoplates and nanofilms on the SiO/Si (300 nm) substrate by vapor phase deposition method without any catalyst. The WS nanostructures were systematically characterized by optical microscopy, scanning electron microscopy, Raman microscopy and atomic force microscopy. We found that growth time and growth temperature play important roles in the morphology of WS nanostructures. Moreover, by using Kelvin probe force microscopy, we found that the WS nanoplates exhibit uniform surface and charge distributions less than 10 mV fluctuations. Our results may apply to the study of other transition metal dichalcogenides by vapor phase deposition method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4875915.html;jsessionid=765lkguq2u1j9.x-aip-live-03?itemId=/content/aip/journal/adva/4/5/10.1063/1.4875915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Synthesis, characterization and electrostatic properties of WS2 nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4875915
10.1063/1.4875915
SEARCH_EXPAND_ITEM