Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666669 (2004).
2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183191 (2007).
3. J. Yu, L. Qin, Y. F. Hao, S. Y. Kuang, X. D. Bai, Y.-M. Chong, W. J. Zhang, and E. Wang, ACS Nano 4(1), 414422 (2010).
4. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83(4), 10571110 (2011).
5. G. L. Hao, X. Qi, Y. D. Liu, Z. Y. Huang, H. X. Li, K. Huang, J. Li, L. W. Yang, and J. X. Zhong, J. Appl. Phys. 111(11), 114312114315 (2012).
6. M. Z. Hossain, S. L. Rumyantsev, K. M. F. Shahil, D. Teweldebrhan, M. Shur, and A. A. Balandin, ACS Nano 5(4), 26572663 (2011).
7. H. L. Zeng, J. F. Dai, W. Yao, D. Xiao, and X. D. Cui, Nat. Nanotechnol. 7(8), 490493 (2012).
8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3), 147150 (2011).
9. S. F. Wu, J. S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Y. Fei, W. G. Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Nat. Phys. 9(3), 149153 (2013).
10. S. F. Wu, C. M. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. D. Xu, ACS Nano 7(3), 27682772 (2013).
11. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Science 317(5834), 100102 (2007).
12. C. Choi, J. Feng, Y. Li, J. Wu, A. Zak, R. Tenne, and H. Dai, Nano Res. 18 (2013).
13. A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Adv. Mater. 25, 899903 (2013).
14. W. Sik Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. Doo Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, and D. Jena, App. Phys. Lett. 101(1), 013107 (2012).
15. W. J. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, Nano Lett. 13(11), 56275634 (2013).
16. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, Sci. Rep. 3 (2013).
17. H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem. Int. Ed. 122(24), 41534156 (2010).
18. R. Huirache-Acuña, F. Paraguay-Delgado, M. A. Albiter, L. Alvarez-Contreras, E. M. Rivera-Muñoz, and G. Alonso-Núñez, J. Mater. Sci. 44(16), 43604369 (2009).
19. N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Adv. Funct. Mater. 23(44), 55115517 (2013).
20. Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. J. Ju, H. T. Yuan, J. P. Shi, T. Gao, D. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui, and Z. F. Liu, ACS Nano 7(10), 89638971 (2013).
21. Y.-H. Lee, L. L. Yu, H. Wang, W. J. Fang, X. Ling, Y. M. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, and C.-S. Chang, Nano Lett. 13(4), 18521857 (2013).
22. S. Tiefenbacher, H. Sehnert, C. Pettenkofer, and W. Jaegermann, Surf. Sci. 318(1–2), L1161L1164 (1994).
23. A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, Sci. Rep. 3(1755), 18 (2013).
24. Z. Q. Wei, D. B. Wang, S. Kim, S.-Y. Kim, Y. K. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science 328(5984), 13731376 (2010).
25. G. L. Hao, Z. Y. Huang, Y. D. Liu, X. Qi, L. Ren, X. Y. Peng, L. W. Yang, X. L. Wei, and J. X. Zhong, AIP Adv. 3(4), 042125 (2013).
26. Y. Li, C.-Y. Xu, and L. Zhen, Appl. Phys. Lett. 102(14), 143110 (2013).
27. G. L. Hao, X. Qi, L. W. Yang, Y. D. Liu, J. Li, L. Ren, F. Sun, and J. X. Zhong, AIP Adv. 2(1), 012114 (2012).
28. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, Nat. Nanotechnol. 8(2), 100103 (2013).

Data & Media loading...


Article metrics loading...



We report the direct growth of atomically thin WS nanoplates and nanofilms on the SiO/Si (300 nm) substrate by vapor phase deposition method without any catalyst. The WS nanostructures were systematically characterized by optical microscopy, scanning electron microscopy, Raman microscopy and atomic force microscopy. We found that growth time and growth temperature play important roles in the morphology of WS nanostructures. Moreover, by using Kelvin probe force microscopy, we found that the WS nanoplates exhibit uniform surface and charge distributions less than 10 mV fluctuations. Our results may apply to the study of other transition metal dichalcogenides by vapor phase deposition method.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd