1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Continuously-tuned tunneling behaviors of ferroelectric tunnel junctions based on BaTiO3/La0.67Sr0.33MnO3 heterostructure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4876234
1.
1. A. Tsurumaki, H. Yamada, and A. Sawa, Adv. Mater. 22, 1040 (2012).
2.
2. Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nat Mater. 12, 617 (2013).
http://dx.doi.org/10.1038/nmat3649
3.
3. M. Y. Zhuravlev, R. F. Sabirianov, S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 94, 246802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.246802
4.
4. E. Y. Tsymbal and H. Kohlstedt, Science 313, 181 (2006).
http://dx.doi.org/10.1126/science.1126230
5.
5. H. Kohlstedt, N. A. Pertsev, J. R. Contreras, and R. Waser, Phys. Rev. B 72, 125341 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125341
6.
6. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthélémy, and M. Bibes, Nature 460, 81 (2009).
http://dx.doi.org/10.1038/nature08128
7.
7. A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, A. H. G. Vlooswijk, G. Rispens, B. Noheda, M. Bibes, and A. Barthélémy, Appl. Phys. Lett. 96, 042901 (2010).
http://dx.doi.org/10.1063/1.3295700
8.
8. A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Ye. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, and E. Y. Tsymbal, Nano Lett. 9, 3539 (2009).
http://dx.doi.org/10.1021/nl901754t
9.
9. D. Pantel, H. Lu, S. Goetze, P. Werner, D. J. Kim, A. Gruverman, D. Hesse, and M. Alexe, Appl. Phys. Lett. 100, 232902 (2012).
http://dx.doi.org/10.1063/1.4726120
10.
10. X. S. Gao, J. M. Liu, K. Au, and J. Y. Dai, Appl. Phys. Lett. 101, 142905 (2012).
http://dx.doi.org/10.1063/1.4756918
11.
11. A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy, and J. Grollier, Nature Mater. 11, 860 (2012).
http://dx.doi.org/10.1038/nmat3415
12.
12. L. Esaki, R. B. Laibowitz, and P. J. Stiles, IBM Tech. Discl. Bull. 13, 114 (1971).
13.
13. J. Junquera and P. Ghosez, Nature 422, 506 (2003).
http://dx.doi.org/10.1038/nature01501
14.
14. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Nat. Nanotechnol. 7, 101 (2011).
http://dx.doi.org/10.1038/nnano.2011.213
15.
15. H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova, A. Gloter, S. Xavier, J. Grollier, E. Jacquet, C. Carrétéro, C. Deranlot, M. Bibes, and A. Barthélémy, ACS Nano 7, 5385 (2013).
http://dx.doi.org/10.1021/nn401378t
16.
16. S. G. Yuan, J. B. Wang, X. L. Zhong, F. Wang, B. Li, and Y. C. Zhou, J. Mater. Chem. C 1, 418 (2013).
http://dx.doi.org/10.1039/c2tc00097k
17.
17. A. Gruverman, A. Kholkin, A. Kingon, and H. Tokumoto, Appl. Phys. Lett. 78, 2751 (2001).
http://dx.doi.org/10.1063/1.1366644
18.
18. J. P. Chen, Y. Luo, X. Ou, G. L. Yuan, Y. P. Wang, Y. Yang, J. Yin, and Z. G. Liu, J. Appl. Phys. 113, 204105 (2013).
http://dx.doi.org/10.1063/1.4807794
19.
19. Y. Luo, X. Y. Li, L. Chang, W. X. Gao, G. L. Yuan, J. Yin, and Z. G. Liu, AIP Adv. 3, 122101 (2013).
http://dx.doi.org/10.1063/1.4840595
20.
20. G. Kim, D. Mazumdar, and A. Gupta, Appl. Phys. Lett. 102, 052908 (2013).
http://dx.doi.org/10.1063/1.4791699
21.
21. W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970).
http://dx.doi.org/10.1063/1.1659141
22.
22. C.-G. Duan, R. F. Sabiryanov, W. N. Mei, S. S. Jaswal, and E. Y. Tsymbal, Nano Lett. 6, 483 (2006).
http://dx.doi.org/10.1021/nl052452l
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876234
Loading
/content/aip/journal/adva/4/5/10.1063/1.4876234
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4876234
2014-05-09
2014-08-01

Abstract

In this work, we fabricate BaTiO/LaSrMnO (BTO/LSMO) ferroelectric tunnel junction on (001) SrTiO substrate by pulsed laser deposition method. Combining piezoresponse force and conductive-tip atomic force microscopy, we demonstrate robust and reproducible polarization-controlled tunneling behaviors with the resulting tunneling electroresistance value reaching about 102 in ultrathin BTO films (∼1.2 nm) at room temperature. Moreover, local poling areas with different conductivity are finally achieved by controlling the relative proportion of upward and downward domains, and different poling areas exhibit stable transport properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4876234.html;jsessionid=t8okjka4fg5a.x-aip-live-03?itemId=/content/aip/journal/adva/4/5/10.1063/1.4876234&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Continuously-tuned tunneling behaviors of ferroelectric tunnel junctions based on BaTiO3/La0.67Sr0.33MnO3 heterostructure
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876234
10.1063/1.4876234
SEARCH_EXPAND_ITEM