Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43, 365 (2002).
2. R. Graham and D. Yu, “High Carrier Mobility in Single Ultrathin Colloidal Lead Selenide Nanowire Field Effect Transistors,” Nano Lett. 12, 4360 (2012).
3. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4, 1063 (2004).
4. S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley. com, 2006).
5. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477 (2010).
6. S. Malaguti, G. Bellanca, and S. Trillo, “Optimizing pump-probe switching ruled by free-carrier dispersion,” Opt. Express 21, 15859 (2013).
7. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012).
8. E. Knoesel, A. Hotzel, and M. Wolf, “Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects,” Phys. Rev. B 57, 12812 (1998).
9. S. Loth, M. Etzkorn, C. P. Lutz, D. Eigler, and A. J. Heinrich, “Measurement of fast electron spin relaxation times with atomic resolution,” Science 329, 1628 (2010).
10. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pumpCprobe technique,” Opt. Lett. 36, 2378 (2011).
11. D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82, 053809 (2010).
12. P. Tzallas, E. Skantzakis, L. Nikolopoulos, G. Tsakiris, and D. Charalambidis, “Extreme-ultraviolet pump-probe studies of one-femtosecond-scale electron dynamics,” Nat. Phys. 7, 781 (2011).
13. H. Wang, C. Zhang, and F. Rana, in “Ultrafast Carrier Dynamics in Single and Few layer MoS2 studied by Optical Pump Probe Technique,” CLEO: QELS_Fundamental Science (Optical Society of America, 2013).
14. S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science 278, 658 (1997).
15. S. Chen, M.-L. Zheng, X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, “Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pumpCprobe technique,” J. Opt. Soc. Am. B 30, 3117 (2013).
16. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20, 988 (1995).
17. M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for Terahertz bandwidth all-optical switching,” Adv. Mater. 23, 5540 (2011).
18. M. Bass, G. Li, and E. Stryland, “Handbook of optics, volume iv,” (2010).
19. M. Shui, Z. Li, X. Jin, J. Yang, Z. Nie, G. Shi, X. Wu, K. Yang, X. Zhang, Y. Wang, et al., “Measurements of dynamics of nondegenerate optical nonlinearity in ZnS with pulses from optical parameter generation,” Opt. Commun. 285, 1940 (2012).
20. W. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, “Quasiparticle band structure of ZnS and ZnSe,” Phys. Rev. B 66, 195215 (2002).
21. C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors,” Opt. Express 19, 22951 (2011).
22. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205 (2002).
23. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Two-photon spectroscopy and analysis with a white-light continuum probe,” Opt. Lett. 27, 270 (2002).
24. R. W. Boyd, Nonlinear optics, 3rd edition (Academic press, 2008).
25. B. V. Olson, M. P. Gehlsen, and T. F. Boggess, “Nondegenerate two-photon absorption in GaSb,” Opt. Commun. (2013).
26. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011).
27. J. Wang, M. Sheik-Bahae, A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009 (1994).

Data & Media loading...


Article metrics loading...



A wavelength swapping nondegenerate pump-probe technique to measure the magnitudes of the nonlinear optical dynamics as well as the relaxation time of electrons in high energy levels is presented using a ZnS single crystal wafer as an example. By pumping the sample with 800 nm femtosecond pulses and probing at 400 nm, nondegenerate two-photon absorption (N-2PA) happens exclusively, and the measured curves only show instantaneous features without relaxation tails. The N-2PA coefficient was derived explicitly as 7.52 cm/GW. Additionally, when the wavelengths of the pump and probe beams are swapped, extra information about the relaxation time of the hot electrons excited in the conduction band is obtained. The combined results above are helpful for evaluating the characteristics of an optical switches based on ZnS or other materials with respect to its nonlinear optical dynamic aspect.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd