1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Optical nonlinear dynamics in ZnS from femtosecond laser pulses
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4876235
1.
1. N. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43, 365 (2002).
http://dx.doi.org/10.1080/00107510110102281
2.
2. R. Graham and D. Yu, “High Carrier Mobility in Single Ultrathin Colloidal Lead Selenide Nanowire Field Effect Transistors,” Nano Lett. 12, 4360 (2012).
http://dx.doi.org/10.1021/nl302161n
3.
3. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4, 1063 (2004).
http://dx.doi.org/10.1021/nl049607u
4.
4. S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley. com, 2006).
5.
5. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477 (2010).
http://dx.doi.org/10.1038/nphoton.2010.89
6.
6. S. Malaguti, G. Bellanca, and S. Trillo, “Optimizing pump-probe switching ruled by free-carrier dispersion,” Opt. Express 21, 15859 (2013).
http://dx.doi.org/10.1364/OE.21.015859
7.
7. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.227402
8.
8. E. Knoesel, A. Hotzel, and M. Wolf, “Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects,” Phys. Rev. B 57, 12812 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12812
9.
9. S. Loth, M. Etzkorn, C. P. Lutz, D. Eigler, and A. J. Heinrich, “Measurement of fast electron spin relaxation times with atomic resolution,” Science 329, 1628 (2010).
http://dx.doi.org/10.1126/science.1191688
10.
10. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pumpCprobe technique,” Opt. Lett. 36, 2378 (2011).
http://dx.doi.org/10.1364/OL.36.002378
11.
11. D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82, 053809 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.053809
12.
12. P. Tzallas, E. Skantzakis, L. Nikolopoulos, G. Tsakiris, and D. Charalambidis, “Extreme-ultraviolet pump-probe studies of one-femtosecond-scale electron dynamics,” Nat. Phys. 7, 781 (2011).
http://dx.doi.org/10.1038/nphys2033
13.
13. H. Wang, C. Zhang, and F. Rana, in “Ultrafast Carrier Dynamics in Single and Few layer MoS2 studied by Optical Pump Probe Technique,” CLEO: QELS_Fundamental Science (Optical Society of America, 2013).
14.
14. S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science 278, 658 (1997).
http://dx.doi.org/10.1126/science.278.5338.658
15.
15. S. Chen, M.-L. Zheng, X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, “Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pumpCprobe technique,” J. Opt. Soc. Am. B 30, 3117 (2013).
http://dx.doi.org/10.1364/JOSAB.30.003117
16.
16. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20, 988 (1995).
http://dx.doi.org/10.1364/OL.20.000988
17.
17. M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for Terahertz bandwidth all-optical switching,” Adv. Mater. 23, 5540 (2011).
http://dx.doi.org/10.1002/adma.201103162
18.
18. M. Bass, G. Li, and E. Stryland, “Handbook of optics, volume iv,” (2010).
19.
19. M. Shui, Z. Li, X. Jin, J. Yang, Z. Nie, G. Shi, X. Wu, K. Yang, X. Zhang, Y. Wang, et al., “Measurements of dynamics of nondegenerate optical nonlinearity in ZnS with pulses from optical parameter generation,” Opt. Commun. 285, 1940 (2012).
http://dx.doi.org/10.1016/j.optcom.2011.11.061
20.
20. W. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, “Quasiparticle band structure of ZnS and ZnSe,” Phys. Rev. B 66, 195215 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195215
21.
21. C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors,” Opt. Express 19, 22951 (2011).
http://dx.doi.org/10.1364/OE.19.022951
22.
22. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205 (2002).
http://dx.doi.org/10.1109/JQE.2002.802448
23.
23. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Two-photon spectroscopy and analysis with a white-light continuum probe,” Opt. Lett. 27, 270 (2002).
http://dx.doi.org/10.1364/OL.27.000270
24.
24. R. W. Boyd, Nonlinear optics, 3rd edition (Academic press, 2008).
25.
25. B. V. Olson, M. P. Gehlsen, and T. F. Boggess, “Nondegenerate two-photon absorption in GaSb,” Opt. Commun. (2013).
26.
26. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011).
http://dx.doi.org/10.1063/1.3570640
27.
27. J. Wang, M. Sheik-Bahae, A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009 (1994).
http://dx.doi.org/10.1364/JOSAB.11.001009
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876235
Loading
/content/aip/journal/adva/4/5/10.1063/1.4876235
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4876235
2014-05-09
2014-10-01

Abstract

A wavelength swapping nondegenerate pump-probe technique to measure the magnitudes of the nonlinear optical dynamics as well as the relaxation time of electrons in high energy levels is presented using a ZnS single crystal wafer as an example. By pumping the sample with 800 nm femtosecond pulses and probing at 400 nm, nondegenerate two-photon absorption (N-2PA) happens exclusively, and the measured curves only show instantaneous features without relaxation tails. The N-2PA coefficient was derived explicitly as 7.52 cm/GW. Additionally, when the wavelengths of the pump and probe beams are swapped, extra information about the relaxation time of the hot electrons excited in the conduction band is obtained. The combined results above are helpful for evaluating the characteristics of an optical switches based on ZnS or other materials with respect to its nonlinear optical dynamic aspect.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4876235.html;jsessionid=1r6nuxqfl1sqx.x-aip-live-02?itemId=/content/aip/journal/adva/4/5/10.1063/1.4876235&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical nonlinear dynamics in ZnS from femtosecond laser pulses
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876235
10.1063/1.4876235
SEARCH_EXPAND_ITEM