Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4876236
1.
1. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
2.
2. S.-M. Peng, Y.-K. Su, L.-W. Ji, C.-Z. Wu, W.-B. Cheng, and W.-C. Chao, J. Phys. Chem. C 114, 3204 (2010).
http://dx.doi.org/10.1021/jp909299y
3.
3. P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, M. S. Wolfgang, W. I. Park, U. Paik, and Y. S. Kang, J. Phys. Chem. Lett. 2, 2011 (1984).
4.
4. E. S. Kumar, J. Chatterjee, N. Rama, N. DasGupta, and M. S. R. Rao, ACS Appl. Mater. Interfaces 3, 1974 (2011).
http://dx.doi.org/10.1021/am200197a
5.
5. H. He, S. Lin, G. Yuan, L. Zhang, W. Zhang, L. Luo, Y. Cao, Z. Ye, and S. T. Lee, J. Phys. Chem. C 115, 19018 (2011).
http://dx.doi.org/10.1021/jp205807g
6.
6. M. A. Thomas and J. B. Cui, J. Phys. Chem. Lett. 1, 1090 (2010).
http://dx.doi.org/10.1021/jz100246e
7.
7. J.-F. Chien, C.-H. Chen, J.-J. Shyue, and M.-J. Chen, ACS Appl. Mater. Interfaces 4, 3471 (2012).
http://dx.doi.org/10.1021/am300551y
8.
8. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, and S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010).
http://dx.doi.org/10.1109/TED.2009.2033769
9.
9. S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, Phys. Rev. Lett. 92, 155504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.155504
10.
10. B. Puchala and D. Morgan, Phys. Rev. B 85, 064106 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064106
11.
11. Y. J. Chen, H.-W. Jen, M.-S. Wong, C.-H. Ho, J.-H. Liang, J.-T. Liu, and J.-H. Pang, J. Cryst. Growth 362, 193 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.03.060
12.
12. V. Vaithianathan, B. T. Lee, C. H. Chang, K. Asokan, and S. S. Kim, Appl. Phys. Lett. 88, 112103 (2006).
http://dx.doi.org/10.1063/1.2186383
13.
13. Z. Shi, Y. Zhang, B. Wu, X. Cai, J. Zhang, X. Xia, H. Wang, X. Dong, H. Liang, B. Zhang, and G. Du, Appl. Phys. Lett. 102, 161101 (2013).
http://dx.doi.org/10.1063/1.4802806
14.
14. G. Du, Y. Cui, X. Xiaochuan, X. Li, H. Zhu, B. Zhang, Y. Zhang, and Y. Ma, Appl. Phys. Lett. 90, 243504 (2007).
http://dx.doi.org/10.1063/1.2748093
15.
15. Y. Ma, Q. Gao, G. G. Wu, W. C. Li, F. B. Gao, J. Z. Yin, B. L. Zhang, and G. T. Du, Mater. Res. Bull. 48, 1239 (2013).
http://dx.doi.org/10.1016/j.materresbull.2012.12.035
16.
16. H. Guan, X. Xia, Y. Zhang, F. Gao, W. Li, G. Wu, X. Li, and G. Du, J. Phys.: Condens. Matter. 20, 292202 (2008).
http://dx.doi.org/10.1088/0953-8984/20/29/292202
17.
17. Y.-C. Cheng, Y.-S. Kuo, Y.-H. Li, J.-J. Shyue, and M.-J. Chen, Thin Solid Films 519, 5558 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.02.072
18.
18. M. Ding, B. Yao, D. Zhao, F. Fang, D. Shen, and Z. Zhang, Thin Solid Films 518, 4390 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.02.009
19.
19. S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075205
20.
20. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth 216, 330 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00437-1
21.
21. W. Lee, D.-K. Hwang, M.-C. Jeong, M. Lee, M.-S. Oh, W.-K. Choi, and J.-M. Myoung, Appl. Surf. Sci. 221, 32 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00947-4
22.
22. W. Lee, M.-C. Jeong, and J.-M. Myoung, Appl. Phys. Lett. 85, 6167 (2004).
http://dx.doi.org/10.1063/1.1840124
23.
23. J. H. Liang, Y. J. Chen, and Y. C. Wang, Surf. Coat. Technol. 231, 243 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2012.04.079
24.
24. P. Wang, N. Chen, Z. Yin, F. Yang, C. Peng, R. Dai, and Y. Bai, J. Appl. Phys. 100, 043704 (2006).
http://dx.doi.org/10.1063/1.2245192
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4876236 for detail literature review on p-type As doped ZnO. [Supplementary Material]
26.
26. J. Sun, H. Liang, J. Zhao, Q. Feng, J. Bian, Z. Zhao, H. Zhang, Y. Luo, L. Hu, and G. Du, Appl. Surf. Sci. 254, 7482 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.06.005
27.
27. H. F. Liu, S. J. Chua, G. X. Hu, H. Gong, and N. Xiang, J. Appl. Phys. 102, 063507 (2007).
http://dx.doi.org/10.1063/1.2781248
28.
28. M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. W. Kang, J. Appl. Phys. 92, 154 (2002).
http://dx.doi.org/10.1063/1.1483371
29.
29. M. Mapa, K. S. Thushara, B. Saha, P. Chakraborty, C. M. Janet, R. P. Viswanath, C. M. Nair, K. V. G. K. Murty, and C. S. Gopinath, Chem. Mater. 21, 2973 (2009).
http://dx.doi.org/10.1021/cm900682q
31.
31. Y. Y. Tay, S. Li, C. Q. Sun, and P. Chen, Appl. Phys. Lett. 88, 173118 (2006).
http://dx.doi.org/10.1063/1.2198821
32.
32. H. Li, L. K. Schirra, J. Shim, H. Cheun, B. Kippelen, O. L. A. Monti, and J.-L. Bredas, Chem. Mater. 24, 3044 (2012).
http://dx.doi.org/10.1021/cm301596x
33.
33. S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, J. Phys.: Condens. Matter 25, 156005 (2013).
http://dx.doi.org/10.1088/0953-8984/25/15/156005
34.
34. R. Contreras-Guerrero, J. P. Veazey, J. Levy, and R. Droopad, Appl. Phys. Lett. 102, 012907 (2013).
http://dx.doi.org/10.1063/1.4773988
35.
35. Handbook of X-ray Photoelectron Spectroscopy, edited by G. E. Muilenberg (Perkin Elmer, Eden Prairie, MN, 1979).
36.
36. N. Xu, Y. Xu, L. Li, Y. Shen, T. Zhang, J. Wu, J. Sun, and Z. Ying, J. Vac. Sci. Technol. A 24, 517 (2006).
http://dx.doi.org/10.1116/1.2194939
37.
37. U. Wahl, E. Rita, J. G. Correia, A. C. Marques, E. Alves, and J. C. Soares, Phys. Rev. Lett. 95, 215503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.215503
38.
38. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
39.
39. V. Avrutin, D. J. Silversmith, and H. Morkoç, Proc. IEEE 98, 1269 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2043330
40.
40. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.11159
41.
41. Z. Yang and J. L. Liu, J. Vac. Sci. Technol. B 28, C3D6 (2010).
http://dx.doi.org/10.1116/1.3368543
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876236
Loading
/content/aip/journal/adva/4/5/10.1063/1.4876236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4876236
2014-05-09
2016-12-06

Abstract

The diffusion behavior of arsenic (As) and gallium (Ga) atoms from semi-insulating GaAs (SI-GaAs) into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 1018 cm−3 and 2.8 × 1019 cm−3 respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 1016 cm−3. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (As–2V), by substituting Zn atoms (As) and thereby creating two zinc vacancies (V). Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, Ga. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4876236.html;jsessionid=OD_uCcYKnr2zQINTjOx3JXpR.x-aip-live-03?itemId=/content/aip/journal/adva/4/5/10.1063/1.4876236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4876236&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4876236'
Right1,Right2,Right3,