1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Molecular dynamics simulations of the melting curve of NiAl alloy under pressure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4876515
1.
1. F. A. Lindemann, Phys. Z 11, 609 (1910).
2.
2. D. Errandonea, M. Somayazulu, D. Häusermann, and H. K. Mao, J. Phys.: Condens. Matter 15, 7635 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/003
3.
3. L. Burakovsky, D. L. Preston, and R. R. Silbar, J. Appl. Phys. 88, 6294 (2000).
http://dx.doi.org/10.1063/1.1323535
4.
4. D. Alfè, G. Price, and M. Gillan, Phys. Rev. B 65, 165118 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165118
5.
5. Z. L. Liu, L. C. Cai, X. R. Chen, and F. Q. Jing, Phys. Rev. B 77, 024103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.024103
6.
6. D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, and M. Ross, Phys. Rev. B 63, 132104 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.132104
7.
7. S. Japel, B. Schwager, R. Boehler, and M. Ross, Phys. Rev. Lett. 95, 167801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.167801
8.
8. D. Errandonea, J. Appl. Phys. 108, 033517 (2010).
http://dx.doi.org/10.1063/1.3468149
9.
9. D. Errandonea, Phys. Rev. B 87, 054108 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.054108
10.
10. Z. L. Liu, X. L. Zhang, L. C. Cai, X. R. Chen, Q. Wu, and F. Q. Jing, J. Phys. Chem. Solids 69, 2833 (2008).
http://dx.doi.org/10.1016/j.jpcs.2008.07.009
11.
11. F. Luo, X. R. Chen, L. C. Cai, and G. F. Ji, J. Chem. Eng. Data 55, 5149 (2010).
http://dx.doi.org/10.1021/je1007058
12.
12. C. M. Liu, X. R. Chen, C. Xu, L. C. Cai, and F. Q. Jing, J. Appl. Phys. 112, 013518 (2012).
http://dx.doi.org/10.1063/1.4733947
13.
13. M. Pozzo and D. Alfè, Phys. Rev. B 88, 024111 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024111
14.
14. J. Ruiz-Fuertes, A. Karandikar, R. Boehler, and D. Errandonea, Phys. Earth Planet. Inter. 181, 69 (2010).
http://dx.doi.org/10.1016/j.pepi.2010.03.013
15.
15. D. Santamaria-Perez, M. Ross, D. Errandonea, G. D. Mukherjee, M. Mezouar, and R. Boehler, J. Chem. Phys. 130, 124509 (2009).
http://dx.doi.org/10.1063/1.3082030
16.
16. R. S. Hixson, D. A. Boness, J. W. Shaner, and J. A. Moriarty, Phys. Rev. Lett. 62, 637 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.637
17.
17. Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, Phys. Rev. Lett. 111, 065501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.065501
18.
18. D. Alfè, M. J. Gillan, and G. D. Price, Nature 401, 462 (1999).
http://dx.doi.org/10.1038/46758
19.
19. A. B. Belonoshko, L. Burakovsky, S. P. Chen, B. Johansson, A. S. Mikhaylushkin, D. L. Preston, S. I. Simak, and D. C. Swift, Phys. Rev. Lett. 100, 135701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.135701
20.
20. C. Cazorla, D. Alfè, and M. J. Gillan, Phys. Rev. Lett. 101, 049601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.049601
21.
21. S. N. Luo and D. C. Swift, Physica B 388, 139 (2007).
http://dx.doi.org/10.1016/j.physb.2006.05.425
22.
22. V. Urlin, Sov Phys JETP 22, 341 (1966).
23.
23. F. Luo, Y. Cheng, X. R. Chen, L. C. Cai, and F. Q. Jing, J. Chem. Eng. Data 56, 2063 (2011).
http://dx.doi.org/10.1021/je1010483
24.
24. D. Errandonea, Physica B 357, 356 (2005).
http://dx.doi.org/10.1016/j.physb.2004.11.087
25.
25. H. Fu, X. Li, W. Liu, Y. Ma, T. Gao, and X. Hong, Intermetallics 19, 1959 (2011).
http://dx.doi.org/10.1016/j.intermet.2011.05.019
26.
26. Q. Xu and A. Van der Ven, Phys. Rev. B 81, 064303 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.064303
27.
27. H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Comput. Mater. Sci. 44, 774 (2008).
http://dx.doi.org/10.1016/j.commatsci.2008.05.026
28.
28. G. Frommeyer, R. Rablbauer, and H. J. Schäfer, Intermetallics 18, 299 (2010).
http://dx.doi.org/10.1016/j.intermet.2009.07.026
29.
29. G. J. Ackland, X. Huang, and K. M. Rabe, Phys. Rev. B 68, 214104 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214104
30.
30. H. Y. Geng, N. X. Chen, and M. H. F. Sluiter, Phys. Rev. B 70, 094203 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.094203
31.
31. R. Darolia, JOM 43, 44 (1991).
http://dx.doi.org/10.1007/BF03220163
32.
32. Y. Mishin, A. Y. Lozovoi, and A. Alavi, Phys. Rev. B 67, 014201 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.014201
33.
33. S. N. Luo, A. Strachan, and D. C. Swift, J. Chem. Phys. 120, 11640 (2004).
http://dx.doi.org/10.1063/1.1755655
34.
34. J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan, Phys. Rev. B 49, 3109 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.3109
35.
35. G. Purja Pun and Y. Mishin, Philos. Mag. 89, 3245 (2009).
http://dx.doi.org/10.1080/14786430903258184
36.
36. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
37.
37. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
38.
38. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
39.
39. Y. I. Dutchak and V. G. Chekh, Russ J Phys Chem 55, 1326 (1981).
40.
40. M. J. Cooper, Philos. Mag. 8, 805 (1963).
http://dx.doi.org/10.1080/14786436308213837
41.
41. Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermophysical Properties of Matter Thermal Expansion, (Plenum Press, New York, 1975).
42.
42. H. Faraoun, H. Aourag, C. Esling, J. L. Seichepine, and C. Coddet, Comput. Mater. Sci. 33, 184 (2005).
http://dx.doi.org/10.1016/j.commatsci.2004.12.011
43.
43. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 65, 224114 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.224114
44.
44. M. Parrinello and A. Rahman, J. Chem. Phys. 76, 2662 (1982).
http://dx.doi.org/10.1063/1.443248
45.
45. J. R. Ray and A. Rahman, J. Chem. Phys. 80, 4423 (1984).
http://dx.doi.org/10.1063/1.447221
46.
46. G. Guangtu, W. Kevin Van, J. D. Schall, and A. H. Judith, J. Phys.: Condens. Matter 18, S1737 (2006).
http://dx.doi.org/10.1088/0953-8984/18/32/S05
47.
47. N. Rusović and H. Warlimont, Phys. Status Solidi (a) 44, 609 (1977).
http://dx.doi.org/10.1002/pssa.2210440225
48.
48. J. Otto, J. Vassiliou, and G. Frommeyer, J. Mater. Res. 12, 3106 (1997).
http://dx.doi.org/10.1557/JMR.1997.0405
49.
49. Y. Wang, Z. K. Liu, and L. Q. Chen, Acta Mater. 52, 2665 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.02.014
50.
50. S. N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.134206
51.
51. S. N. Luo and T. J. Ahrens, Appl. Phys. Lett. 82, 1836 (2003).
http://dx.doi.org/10.1063/1.1563046
52.
52. T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Binary alloy phase diagrams, Vol. 1 (ASM, Materials Park, OH, 1986).
53.
53. A. Kerrache, J. Horbach, and K. Binder, EPL 81, 58001 (2008).
http://dx.doi.org/10.1209/0295-5075/81/58001
54.
54. L. Vočadlo and D. Alfè, Phys. Rev. B 65, 214105 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.214105
55.
55. J. Bouchet, F. Bottin, G. Jomard, and G. Zérah, Phys. Rev. B 80, 094102 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094102
56.
56. H. M. Strong and F. P. Bundy, Phys. Rev. 115, 278 (1959).
http://dx.doi.org/10.1103/PhysRev.115.278
57.
57. P. Lazor, G. Shen, and S. K. Saxena, Phys. Chem. Minerals 20, 86 (1993).
http://dx.doi.org/10.1007/BF00207200
58.
58. R. Boehler and M. Ross, EPSL 153, 223 (1997).
http://dx.doi.org/10.1016/S0012-821X(97)00188-X
59.
59. A. Hänström and P. Lazor, J. Alloy Compd. 305, 209 (2000).
http://dx.doi.org/10.1016/S0925-8388(00)00736-2
60.
60. N. S. Weingarten, W. D. Mattson, and B. M. Rice, J. Appl. Phys. 106, 063524 (2009).
http://dx.doi.org/10.1063/1.3213342
61.
61. N. S. Weingarten and M. R. Betsy, J. Phys.: Condens. Matter 23, 275701 (2011).
http://dx.doi.org/10.1088/0953-8984/23/27/275701
62.
62. Q. L. Cao, P. P. Wang, D. H. Huang, Q. Li, F. H. Wang, and L. C. Cai, J. Chem. Eng. Data, 58, 64 (2013).
http://dx.doi.org/10.1021/je3008638
63.
63. P. Lazor, G. Shen, and S. Saxena, Phys. Chem. Minerals 20, 86 (1993).
http://dx.doi.org/10.1007/BF00207200
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876515
Loading
/content/aip/journal/adva/4/5/10.1063/1.4876515
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4876515
2014-05-13
2014-12-22

Abstract

The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801)0.298 (one-phase approach), 1850(1 + P/12.806)0.357 (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4876515.html;jsessionid=398amd9a2siti.x-aip-live-02?itemId=/content/aip/journal/adva/4/5/10.1063/1.4876515&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Molecular dynamics simulations of the melting curve of NiAl alloy under pressure
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4876515
10.1063/1.4876515
SEARCH_EXPAND_ITEM