Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Springholz, T. Schwarzl, M. Aigle, H. Pascher, and W. Heiss, Appl. Phys. Lett. 76, 1807 (2000).
2. T. Schwarzl, W. Heiss, G. Springholz, M. Aigle, and H. Pascher, Electron. Lett. 36, 322 (2000).
3. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, Hoboken, NJ, 2007).
4. C. Boschetti, I. Bandeira, H. Closs, A. Ueta, P. Rappl, P. Motisuke, and E. Abramof, Infrared Phys. Technol. 42, 91 (2001).
5. A. Barros, E. Abramof, and P. Rappl, J. Appl. Phys. 99, 024904 (2006).
6. Z. Dughaish, Phys. B - Cond. Matt. 322, 205 (2002).
7. J. P. Heremans, C. Thrush, and D. T. Morelli, Phys. Rev. B 70, 115334 (2004).
8. J. P. Heremans, C. Thrush, and D. T. Morelli, J. Appl. Phys. 98, 063703 (2005).
9. N. Romčević, J. Trajić, M. Romčević, D. Stojanović, T. A. Kuznetsova, D. R. Khokhlov, W. D. Dobrowolski, Optoele. and Adv. Mat. – Rap. Comm. 4(4), 470 (2010).
10. B. A. Volkov, L. I. Ryabova, and D. R. Khokhlov, Phys. Usp. 45(8), 819 (2002).
11. K. Lee, S. Lee, S. N. Holmes, J. Ham, W. Lee, and C. H. W. Barnes, Phys. Rev. B 82, 245310 (2010).
12. W. Shim, J. Ham, J. Kim, and W. Lee, Appl. Phys. Lett. 95, 232107 (2009).
13. J. Heremans, C. M. Thrush, Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and D. T. Morelli, Phys. Rev. B. Rapid Comm. 58, R10091 (1998).
14. J. Heremans, C. M. Thrush, Y. M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B 61, 2921 (2000).
15. Dedi, P. C. Lee, C. H. Chien, G. P. Dong, W. C. Huang, C. L. Chen, C. M. Tseng, S. R. Harutyunyan, C. H. Lee, and Y. Y. Chen, Appl. Phys. Lett. 103, p023115 (2013).
16. S. Y. Jang, H. S. Kim, J. Park, M. Jung, J. Kim, S. H. Lee, J. W. Roh, and W. Lee, Nanotechnology 20, 415204 (2009).
17. G. Tai, B. Zhou, and W. Guo, J. Phys. Chem. C, 112, 11314 (2008).
18. V. V. Shchennikov and S. V. Ovsyannikov, Sol. State Comm. 126, 373378 (2003).
19. B. L. Al'tshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmel'nitskii, Sov. Phys. JETP 54(2), 411 (1981).

Data & Media loading...


Article metrics loading...



In this study, structurally uniform single crystalline PbTe nanowires (NWs) were synthesized using a stress-induced growth. Selected-area electron diffraction patterns show that the PbTe NWs were grown along the [100] direction. The electrical conductivity of a NW with 142 nm in diameter exhibited a semiconducting behavior at 50–300 K. An enhancement of electrical conductivity up to 2383 S m−1 at 300 K is much higher than [0.44–1526 S m−1, Chen et al. , Appl. Phys. Lett.103, p023115, (2013)] in previous studies. The room temperature magnetoresistance of the 142 nm NW was ∼0.8% at B = 2 T, which is considerably higher than that [0.2% at B = 2 T, Ovsyannikov et al. , Sol. State Comm.126, 373, (2003)] of the PbTe bulk reported.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd