Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. J. Vlassak, Y. Lin, and T. Y. Tsui, Mater Sci Eng A 391, 159 (2005).
2. S. M. Gates, G. Dubois, E. T. Ryan, A. Grill, M. Liu, and D. Gidley, J. Electrochem. Soc. 156, G156 (2009).
3. K. Maex, M. Baklanov, D. Shimiryan, F. Iacopi, S. Brongersma, and Z. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).
4. Y. Lin, T. Y. Tsui, and J. J. Vlassak, Acta Materialia 55, 2455 (2007).
5. E. T. Ryan, S. M. Gates, A. Grill, S. Molis, P. Flaitz, J. Arnold, M. Sankarapandian, S. A. Cohen, Y. Ostrovski, and C. Dimitrakopoulos, J. Appl. Phys. 104, 094109 (2008).
6. A. Grill, S. M. Gates, E. T. Ryan, S. V. Nguyen, and D. Priyadarshini, Appl. Phys. Rev. 1, 011306 (2014).
7. A. Grill, D. Edelstein, M. Lane, V. Patel, S. Gates, D. Restaino, and S. Molis, J. Appl. Phys. 103, 054104 (2008).
8. M. W. Lane, J. M. Snodgrass, and R. H. Dauskardt, Microelectronics and Reliability 41, 1615 (2001).
9. M. W. Lane, X. H. Liu, and T. M. Shaw, IEEE Transactions on Device and Materials Reliability 4, 142 (2004).
10. E. Guyer, M. Patz, and R. Dauskardt, J. Mater. Res. 21, 882 (2006).
11. R. F. Cook and E. G. Liniger, J. Electrochemical Soc. 146, 4439 (1999).
12. A. B. Hall, S. M. Gates, and M. W. Lane, Appl. Phys. Let. 101, 202901 (2012).
13. E. P. Guyer and R. H. Dauskardt, Nature Materials 3, 53 (2004).
14. E. P. Guyer and R. H. Dauskardt, J. Mater. Res. 20, 680 (2005).
15. T-S Kim, T. Konno, and R. H. Dauskardt, Acta Mater. 57, 4687 (2009).
16. R. F. Cook and E. G. Liniger, J. Am. Ceram. Soc. 76, 1096 (1993).
17. B. R. Lawn, Mater. Sci. Eng. 13, 277 (1974).
18. S. M. Weiderhorn, J. Am. Ceram. Soc. 50, 407 (1967).
19. S. M. Weiderhorn and L. H. Bolz, J. Am. Ceram. Soc. 53, 543 (1970).
20. S. M. Weiderhorn and H. Johnson, J. Am. Ceram. Soc. 56, 192, (1973).
21. S. M. Weiderhorn, E. R. Fuller Jr., and R. Thomson, Metal Sci. 14, 450 (1980).
22. B. R. Lawn, J. Mater. Sci. 10, 469 (1975).
23. C. H. P. Lupis, Chemical Thermodynamics of Materials (Prentice Hall P T R, New Jersey, 1983) p. 107109.
24. F. Iacopi, Y. Travaly, and B. Eyckens, J. Appl. Phys. 99, 053511 (2006).
25. M. Lane, N. Krishna, I. Hashim, and R. H. Dauskardt, J. Mater. Res. 15, 203 (2000).
26. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fract. Mech. 61, 141 (1998).
27. W. J. Hamer and Y-C Wu, J. Phys. Chem. Ref. Data 1, 1047 (1972).
28. D. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem. 33, 493 (1982).
29. R. Walsh, Acc. Chem. Res. 14, 246 (1981).
30. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).
31. T. A. Michalske and S. W. Freiman, J. Am. Ceram. Soc. 66, 284 (1983).

Data & Media loading...


Article metrics loading...



Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd