1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4877665
1.
1. J. J. Vlassak, Y. Lin, and T. Y. Tsui, Mater Sci Eng A 391, 159 (2005).
http://dx.doi.org/10.1016/j.msea.2004.08.070
2.
2. S. M. Gates, G. Dubois, E. T. Ryan, A. Grill, M. Liu, and D. Gidley, J. Electrochem. Soc. 156, G156 (2009).
http://dx.doi.org/10.1149/1.3186029
3.
3. K. Maex, M. Baklanov, D. Shimiryan, F. Iacopi, S. Brongersma, and Z. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).
http://dx.doi.org/10.1063/1.1567460
4.
4. Y. Lin, T. Y. Tsui, and J. J. Vlassak, Acta Materialia 55, 2455 (2007).
http://dx.doi.org/10.1016/j.actamat.2006.11.040
5.
5. E. T. Ryan, S. M. Gates, A. Grill, S. Molis, P. Flaitz, J. Arnold, M. Sankarapandian, S. A. Cohen, Y. Ostrovski, and C. Dimitrakopoulos, J. Appl. Phys. 104, 094109 (2008).
http://dx.doi.org/10.1063/1.3006438
6.
6. A. Grill, S. M. Gates, E. T. Ryan, S. V. Nguyen, and D. Priyadarshini, Appl. Phys. Rev. 1, 011306 (2014).
http://dx.doi.org/10.1063/1.4861876
7.
7. A. Grill, D. Edelstein, M. Lane, V. Patel, S. Gates, D. Restaino, and S. Molis, J. Appl. Phys. 103, 054104 (2008).
http://dx.doi.org/10.1063/1.2844483
8.
8. M. W. Lane, J. M. Snodgrass, and R. H. Dauskardt, Microelectronics and Reliability 41, 1615 (2001).
http://dx.doi.org/10.1016/S0026-2714(01)00150-0
9.
9. M. W. Lane, X. H. Liu, and T. M. Shaw, IEEE Transactions on Device and Materials Reliability 4, 142 (2004).
http://dx.doi.org/10.1109/TDMR.2004.829123
10.
10. E. Guyer, M. Patz, and R. Dauskardt, J. Mater. Res. 21, 882 (2006).
http://dx.doi.org/10.1557/jmr.2006.0106
11.
11. R. F. Cook and E. G. Liniger, J. Electrochemical Soc. 146, 4439 (1999).
http://dx.doi.org/10.1149/1.1392656
12.
12. A. B. Hall, S. M. Gates, and M. W. Lane, Appl. Phys. Let. 101, 202901 (2012).
http://dx.doi.org/10.1063/1.4766336
13.
13. E. P. Guyer and R. H. Dauskardt, Nature Materials 3, 53 (2004).
http://dx.doi.org/10.1038/nmat1037
14.
14. E. P. Guyer and R. H. Dauskardt, J. Mater. Res. 20, 680 (2005).
http://dx.doi.org/10.1557/JMR.2005.0079
15.
15. T-S Kim, T. Konno, and R. H. Dauskardt, Acta Mater. 57, 4687 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.06.022
16.
16. R. F. Cook and E. G. Liniger, J. Am. Ceram. Soc. 76, 1096 (1993).
http://dx.doi.org/10.1111/j.1151-2916.1993.tb03726.x
17.
17. B. R. Lawn, Mater. Sci. Eng. 13, 277 (1974).
http://dx.doi.org/10.1016/0025-5416(74)90199-2
18.
18. S. M. Weiderhorn, J. Am. Ceram. Soc. 50, 407 (1967).
http://dx.doi.org/10.1111/j.1151-2916.1967.tb15145.x
19.
19. S. M. Weiderhorn and L. H. Bolz, J. Am. Ceram. Soc. 53, 543 (1970).
http://dx.doi.org/10.1111/j.1151-2916.1970.tb15962.x
20.
20. S. M. Weiderhorn and H. Johnson, J. Am. Ceram. Soc. 56, 192, (1973).
http://dx.doi.org/10.1111/j.1151-2916.1973.tb12454.x
21.
21. S. M. Weiderhorn, E. R. Fuller Jr., and R. Thomson, Metal Sci. 14, 450 (1980).
http://dx.doi.org/10.1179/msc.1980.14.8-9.450
22.
22. B. R. Lawn, J. Mater. Sci. 10, 469 (1975).
http://dx.doi.org/10.1007/BF00543692
23.
23. C. H. P. Lupis, Chemical Thermodynamics of Materials (Prentice Hall P T R, New Jersey, 1983) p. 107109.
24.
24. F. Iacopi, Y. Travaly, and B. Eyckens, J. Appl. Phys. 99, 053511 (2006).
http://dx.doi.org/10.1063/1.2178393
25.
25. M. Lane, N. Krishna, I. Hashim, and R. H. Dauskardt, J. Mater. Res. 15, 203 (2000).
http://dx.doi.org/10.1557/JMR.2000.0033
26.
26. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fract. Mech. 61, 141 (1998).
http://dx.doi.org/10.1016/S0013-7944(98)00052-6
27.
27. W. J. Hamer and Y-C Wu, J. Phys. Chem. Ref. Data 1, 1047 (1972).
http://dx.doi.org/10.1063/1.3253108
28.
28. D. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem. 33, 493 (1982).
http://dx.doi.org/10.1146/annurev.pc.33.100182.002425
29.
29. R. Walsh, Acc. Chem. Res. 14, 246 (1981).
http://dx.doi.org/10.1021/ar00068a004
30.
30. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).
http://dx.doi.org/10.1021/ar020230d
31.
31. T. A. Michalske and S. W. Freiman, J. Am. Ceram. Soc. 66, 284 (1983).
http://dx.doi.org/10.1111/j.1151-2916.1983.tb15715.x
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4877665
Loading
/content/aip/journal/adva/4/5/10.1063/1.4877665
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4877665
2014-05-13
2014-07-25

Abstract

Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4877665.html;jsessionid=2d7s5815rci6t.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4877665&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4877665
10.1063/1.4877665
SEARCH_EXPAND_ITEM