Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4878795
1.
1. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Applied Physics Letters 77, 666668 (2000).
http://dx.doi.org/10.1063/1.127079
2.
2. H. Xie, A. Cai, and X. Wang, “Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays,” Physics Letters A 369, 120123 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.02.079
3.
3. H. Zhang, J. Li, B. Zhang, K. Yao, W. Liu, and H. Wang, “Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328958K temperature range,” Physical Review B 75, 205407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205407
4.
4. X. Huang, J. Wang, G. Eres, and X. Wang, “Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 k,” Carbon 49, 16801691 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.12.053
5.
5. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters 87, 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
6.
6. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Physical Review Letters 95, 065502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.065502
7.
7. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters 6, 96100 (2006).
http://dx.doi.org/10.1021/nl052145f
8.
8. H. Hayashi, T. Ikuta, T. Nishiyama, and K. Takahashi, “Enhanced anisotropic heat conduction in multi-walled carbon nanotubes,” Journal of Applied Physics 113, 014301 (2013).
http://dx.doi.org/10.1063/1.4772612
9.
9. S. Berber, Y. K. Kwon, and D. Tomnek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters 84, 46134616 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4613
10.
10. A. V. Savin, B. Hu, and Y. S. Kivshar, “Thermal conductivity of single-walled carbon nanotubes,” Physical Review B 80, 195423 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195423
11.
11. T. Y. Choi, D. Poulikakos, J. Tharian, and U. Sennhauser, “Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method,” Nano Letters 6, 15891593 (2006).
http://dx.doi.org/10.1021/nl060331v
12.
12. Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu, A. Z. Jin, H. F. Yang, and C. Z. Gu, “Length-dependent thermal conductivity of an individual single-wall carbon nanotube,” Applied Physics Letters 91, 123119 (2007).
http://dx.doi.org/10.1063/1.2779850
13.
13. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Physical Review B 66, 165440 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165440
14.
14. W. Lin, J. Shang, W. Gu, and C. P. Wong, “Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique,” Carbon 50, 15911603 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.11.038
15.
15. R. Shrestha, K. M. Lee, W. S. Chang, D. S. Kim, G. H. Rhee, and T. Y. Choi, “Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor,” Review of Scientific Instruments 84, 034901 (2013).
http://dx.doi.org/10.1063/1.4792841
16.
16. D. Donadio and G. Galli, “Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation,” Physical Review Letters 99, 255502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.255502
17.
17. Y. Gu and Y. Chen, “Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations,” Physical Review B 76, 134110 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.134110
18.
18. A. Cao and J. Qu, “Size dependent thermal conductivity of single-walled carbon nanotubes,” Journal of Applied Physics 112, 013503 (2012).
http://dx.doi.org/10.1063/1.4730908
19.
19. J. Park, M. F. P. Bifano, and V. Prakash, “Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment,” Journal of Applied Physics 113, 034312 (2013).
http://dx.doi.org/10.1063/1.4778477
20.
20. M. J. Moran, Principles of Engineering Thermodynamics (John Wiley & Sons, Singapore, 2011).
21.
21. R. N. Salaway and L. V. Zhigilei, “Molecular dynamics simulations of thermal conductivity of carbon nanotubes: Resolving the effects of computational parameters,” International Journal of Heat and Mass Transfer 70, 954964 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.065
22.
22. W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, “Linear specific heat of carbon nanotubes,” Physical Review B 59, R90159018 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R9015
23.
23. C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, “Thermal conductance and thermopower of an individual single-wall carbon nanotube,” Nano letters 5, 18421846 (2005).
http://dx.doi.org/10.1021/nl051044e
24.
24. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004).
25.
25. J. Che, T. Çagin, and W. A. Goddard III, “Thermal conductivity of carbon nanotubes,” Nanotechnology 11, 6569 (2000).
http://dx.doi.org/10.1088/0957-4484/11/2/305
26.
26. M. B. Jakubinek, M. A. White, G. Li, C. Jayasinghe, W. Cho, M. J. Schulz, and V. Shanov, “Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays,” Carbon 48, 39473952 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.06.063
27.
27. J. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. A. Zinn, T. T. Xu, Y. Chen, and D. Li, “Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate,” Small 7, 23342340 (2011).
http://dx.doi.org/10.1002/smll.201100429
28.
28. L. Zhang, G. Zhang, C. Liu, and S. Fan, “High-density carbon nanotube buckypapers with superior transport and mechanical properties,” Nano Letters 12, 48484852 (2012).
http://dx.doi.org/10.1021/nl3023274
29.
29. M. B. Jakubinek, M. B. Johnson, M. A. White, C. Jayasinghe, G. Li, W. Cho, M. J. Schulz, and V. Shanov, “Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns,” Carbon 50, 244248 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.08.041
30.
30. J. H. Pöhls, M. B. Johnson, M. A. White, R. Malik, B. Ruff, C. Jayasinghe, M. J. Schulz, and V. Shanov, “Physical properties of carbon nanotube sheets drawn from nanotube arrays,” Carbon 50, 41754183 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.04.067
31.
31. G. J. Hust, A fine-grained, isotropic graphite for use as NBS (National Bureau of Standards) thermophysical property RMs from 5 to 2500 K (National Bureau of Standards, Washington, DC, 1984).
32.
32. E. Wörner, C. Wild, W. Müller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond and Related Materials 5, 688692 (1996).
http://dx.doi.org/10.1016/0925-9635(95)00390-8
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4878795
Loading
/content/aip/journal/adva/4/5/10.1063/1.4878795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4878795
2014-05-19
2016-12-10

Abstract

Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs) have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4878795.html;jsessionid=cvngIX98S573_1UfvR7CD1AF.x-aip-live-03?itemId=/content/aip/journal/adva/4/5/10.1063/1.4878795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4878795&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4878795'
Right1,Right2,Right3,