Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Applied Physics Letters 77, 666668 (2000).
2. H. Xie, A. Cai, and X. Wang, “Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays,” Physics Letters A 369, 120123 (2007).
3. H. Zhang, J. Li, B. Zhang, K. Yao, W. Liu, and H. Wang, “Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328958K temperature range,” Physical Review B 75, 205407 (2007).
4. X. Huang, J. Wang, G. Eres, and X. Wang, “Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 k,” Carbon 49, 16801691 (2011).
5. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters 87, 215502 (2001).
6. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Physical Review Letters 95, 065502 (2005).
7. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters 6, 96100 (2006).
8. H. Hayashi, T. Ikuta, T. Nishiyama, and K. Takahashi, “Enhanced anisotropic heat conduction in multi-walled carbon nanotubes,” Journal of Applied Physics 113, 014301 (2013).
9. S. Berber, Y. K. Kwon, and D. Tomnek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters 84, 46134616 (2000).
10. A. V. Savin, B. Hu, and Y. S. Kivshar, “Thermal conductivity of single-walled carbon nanotubes,” Physical Review B 80, 195423 (2009).
11. T. Y. Choi, D. Poulikakos, J. Tharian, and U. Sennhauser, “Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method,” Nano Letters 6, 15891593 (2006).
12. Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu, A. Z. Jin, H. F. Yang, and C. Z. Gu, “Length-dependent thermal conductivity of an individual single-wall carbon nanotube,” Applied Physics Letters 91, 123119 (2007).
13. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Physical Review B 66, 165440 (2002).
14. W. Lin, J. Shang, W. Gu, and C. P. Wong, “Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique,” Carbon 50, 15911603 (2012).
15. R. Shrestha, K. M. Lee, W. S. Chang, D. S. Kim, G. H. Rhee, and T. Y. Choi, “Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor,” Review of Scientific Instruments 84, 034901 (2013).
16. D. Donadio and G. Galli, “Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation,” Physical Review Letters 99, 255502 (2007).
17. Y. Gu and Y. Chen, “Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations,” Physical Review B 76, 134110 (2007).
18. A. Cao and J. Qu, “Size dependent thermal conductivity of single-walled carbon nanotubes,” Journal of Applied Physics 112, 013503 (2012).
19. J. Park, M. F. P. Bifano, and V. Prakash, “Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment,” Journal of Applied Physics 113, 034312 (2013).
20. M. J. Moran, Principles of Engineering Thermodynamics (John Wiley & Sons, Singapore, 2011).
21. R. N. Salaway and L. V. Zhigilei, “Molecular dynamics simulations of thermal conductivity of carbon nanotubes: Resolving the effects of computational parameters,” International Journal of Heat and Mass Transfer 70, 954964 (2014).
22. W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, “Linear specific heat of carbon nanotubes,” Physical Review B 59, R90159018 (1999).
23. C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, “Thermal conductance and thermopower of an individual single-wall carbon nanotube,” Nano letters 5, 18421846 (2005).
24. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004).
25. J. Che, T. Çagin, and W. A. Goddard III, “Thermal conductivity of carbon nanotubes,” Nanotechnology 11, 6569 (2000).
26. M. B. Jakubinek, M. A. White, G. Li, C. Jayasinghe, W. Cho, M. J. Schulz, and V. Shanov, “Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays,” Carbon 48, 39473952 (2010).
27. J. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. A. Zinn, T. T. Xu, Y. Chen, and D. Li, “Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate,” Small 7, 23342340 (2011).
28. L. Zhang, G. Zhang, C. Liu, and S. Fan, “High-density carbon nanotube buckypapers with superior transport and mechanical properties,” Nano Letters 12, 48484852 (2012).
29. M. B. Jakubinek, M. B. Johnson, M. A. White, C. Jayasinghe, G. Li, W. Cho, M. J. Schulz, and V. Shanov, “Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns,” Carbon 50, 244248 (2012).
30. J. H. Pöhls, M. B. Johnson, M. A. White, R. Malik, B. Ruff, C. Jayasinghe, M. J. Schulz, and V. Shanov, “Physical properties of carbon nanotube sheets drawn from nanotube arrays,” Carbon 50, 41754183 (2012).
31. G. J. Hust, A fine-grained, isotropic graphite for use as NBS (National Bureau of Standards) thermophysical property RMs from 5 to 2500 K (National Bureau of Standards, Washington, DC, 1984).
32. E. Wörner, C. Wild, W. Müller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond and Related Materials 5, 688692 (1996).

Data & Media loading...


Article metrics loading...



Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs) have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd