Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. Chang, and L. Esaki, Phys. Rev. Lett. 63, 1849 (1989).
2. T. Dietl, H. Ohono, F. Matsukar, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
3. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 (2003).
4. D. S. Han, J. Park, K. W. Rhie, S. Kim, and J. Chang, J. Appl. Phys. Lett. 86, 032506 (2005).
5. H.-J. Choi, H. K. Seong, J. Chang, K. Lee, Y. Park, J. Kim, S. K. Lee, R. He, T. Kuykendall, and P. Yang, Adv. Mater. 17, 1351 (2005).
6. H. Seong, J. Y. Kim, J. J. Kim, S. C. Lee, S. Kim, U. Kim, T. E. Park, and H. J. Choi, Nano Lett. 7, 3366 (2007).
7. J. Y. Kim, J. H. Park, B. G. Park, H-J. Noh, S. J. Oh, J. S. Yang, D. H. Kim, S. D. Bu, T. W. Noh, H. J. Lin, H. H. Hsieh, and C. T. Chen, Phys. Rev. Lett. 90, 017401 (2003).
8. T. Dietl, Acta Physica Polonica A. 111, 27 (2007).
9. G. Z. Xing, D. D. Wang, C.-J. Cheng, M. He, S. Li, and T. Wu, Appl. Phys. Lett. 103, 022402 (2013).
10. S. B. Ogale, Adv. Mater. 22, 3125 (2010).
11. G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng, and T. Wu, AIP Advances 1, 022152 (2011).
12. G. Z. Xing, D. D. Wang, J. B. Yi, L. L. Yang, M. Gao, M. He, J. H. Yang, J. Ding, T. C. Sum, and T. Wu, Appl. Phys. Lett. 96, 112511 (2010).
13. C. Madhu, A. Sundaresan, and C. N.R. Rao, Phys. Rev. B 77, 201306 (2008).
14. H. Jin, Y. Dai, B. B. Huang, and M. H. Whangbo, Appl. Phys. Lett. 94, 162505 (2009).
15. P. Larson, and S. Sathpathy, Phys. Rev. B. 76, 245205 (2007).
16. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).
17. S. C. Erwin, and F. J. Himpsel, Nature Commun. 1, 58 (2010).
18. P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).
19. X. Wang, M. Zhao, T. He, Z. Wang, and X. Liu, Appl. Phys. Lett. 102, 062411 (2013).
20. H. Jin, Y. Dai, B. Huang, and M.-H. Whangbo, Appl. Phys. Lett. 94, 162505 (2009).
21. K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, and H. Lüth, J. Appl. Phys. 105, 123707 (2009).
22. T. Stoica, E. Sutter, R. Meijers, R. K. Debnath, R. Calarco, and H. Lüth, Small 4, 751 (2008).
23. R. K. Debnath, T. Stoica, A. Besmehn, K. Jeganathan, E. Sutter, R. Meijers, H. Luth, and R. Calarco, J. Cryst. Growth. 311, 3389 (2009).
24. T. Meijers, R. Richter, R. Calarco, T. Stoica, H.-P. Bochem, M. Marso, and H. Lüth, J. Cryst. Growth. 289, 381 (2006).
25. V. Purushothaman, V. Ramakrishnan, and K. Jeganathan, RSC Adv. 2, 4802 (2012).
26. V. Purushothaman and K. Jeganathan, J. Phys. Chem. C 117, 7348 (2013).
27. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).
28. K. Jeganathan, X. Q. Shen, T. Ide, M. Shimizu, and H. Okumura, Jpn. J. Appl. Phys. 41, 4454 (2002).
29. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Luth, Nano Lett. 6, 704 (2006).
30. O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, and H. Riechert, Phy. Rev. B 81, 045302 (2010).
31. D. Sam-Giao, R. Mata, G. Tourbot, J. Renard, A. Wysmolek, B. Daudin, and B. Gayral, J. Appl. Phys. 113, 043102 (2013).
32. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
33. F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhof, J. Appl. Phys. 104, 074309 (2008).
34. E. Matioli, S. Brinkley, K. M. Kelchner, Y-L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, Light: Science & Applications 1, e22 (2012).
35. A. Lundskog, C-Wei. Hsu, K. F. Karlsson, S. Amloy, D. Nilsson, U. Forsberg, P. O. Holtz, and E. Janzén, Light: Science & Applications 3, e139 (2014).
36. A. Kuang, H. Yuan, and H. Chen, Appl.Surface Science. 256, 6040 (2008).
37. B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, A. T. Kalghatgi, S. B. Krupanidhi, N. Kumar, and A. Sundaresan, Appl. Phys. Lett. 99, 162512 (2011).

Data & Media loading...


Article metrics loading...



We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10−8 mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd