Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4878976
1.
1. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. Chang, and L. Esaki, Phys. Rev. Lett. 63, 1849 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1849
2.
2. T. Dietl, H. Ohono, F. Matsukar, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
3.
3. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 (2003).
http://dx.doi.org/10.1038/nmat984
4.
4. D. S. Han, J. Park, K. W. Rhie, S. Kim, and J. Chang, J. Appl. Phys. Lett. 86, 032506 (2005).
http://dx.doi.org/10.1063/1.1852725
5.
5. H.-J. Choi, H. K. Seong, J. Chang, K. Lee, Y. Park, J. Kim, S. K. Lee, R. He, T. Kuykendall, and P. Yang, Adv. Mater. 17, 1351 (2005).
http://dx.doi.org/10.1002/adma.200401706
6.
6. H. Seong, J. Y. Kim, J. J. Kim, S. C. Lee, S. Kim, U. Kim, T. E. Park, and H. J. Choi, Nano Lett. 7, 3366 (2007).
http://dx.doi.org/10.1021/nl0716552
7.
7. J. Y. Kim, J. H. Park, B. G. Park, H-J. Noh, S. J. Oh, J. S. Yang, D. H. Kim, S. D. Bu, T. W. Noh, H. J. Lin, H. H. Hsieh, and C. T. Chen, Phys. Rev. Lett. 90, 017401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.017401
8.
8. T. Dietl, Acta Physica Polonica A. 111, 27 (2007).
9.
9. G. Z. Xing, D. D. Wang, C.-J. Cheng, M. He, S. Li, and T. Wu, Appl. Phys. Lett. 103, 022402 (2013).
http://dx.doi.org/10.1063/1.4813217
10.
10. S. B. Ogale, Adv. Mater. 22, 3125 (2010).
http://dx.doi.org/10.1002/adma.200903891
11.
11. G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng, and T. Wu, AIP Advances 1, 022152 (2011).
http://dx.doi.org/10.1063/1.3609964
12.
12. G. Z. Xing, D. D. Wang, J. B. Yi, L. L. Yang, M. Gao, M. He, J. H. Yang, J. Ding, T. C. Sum, and T. Wu, Appl. Phys. Lett. 96, 112511 (2010).
http://dx.doi.org/10.1063/1.3340930
13.
13. C. Madhu, A. Sundaresan, and C. N.R. Rao, Phys. Rev. B 77, 201306 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.201306
14.
14. H. Jin, Y. Dai, B. B. Huang, and M. H. Whangbo, Appl. Phys. Lett. 94, 162505 (2009).
http://dx.doi.org/10.1063/1.3123169
15.
15. P. Larson, and S. Sathpathy, Phys. Rev. B. 76, 245205 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245205
16.
16. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.196402
17.
17. S. C. Erwin, and F. J. Himpsel, Nature Commun. 1, 58 (2010).
http://dx.doi.org/10.1038/ncomms1056
18.
18. P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.117204
19.
19. X. Wang, M. Zhao, T. He, Z. Wang, and X. Liu, Appl. Phys. Lett. 102, 062411 (2013).
http://dx.doi.org/10.1063/1.4792528
20.
20. H. Jin, Y. Dai, B. Huang, and M.-H. Whangbo, Appl. Phys. Lett. 94, 162505 (2009).
http://dx.doi.org/10.1063/1.3123169
21.
21. K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, and H. Lüth, J. Appl. Phys. 105, 123707 (2009).
http://dx.doi.org/10.1063/1.3148862
22.
22. T. Stoica, E. Sutter, R. Meijers, R. K. Debnath, R. Calarco, and H. Lüth, Small 4, 751 (2008).
http://dx.doi.org/10.1002/smll.200700936
23.
23. R. K. Debnath, T. Stoica, A. Besmehn, K. Jeganathan, E. Sutter, R. Meijers, H. Luth, and R. Calarco, J. Cryst. Growth. 311, 3389 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.04.025
24.
24. T. Meijers, R. Richter, R. Calarco, T. Stoica, H.-P. Bochem, M. Marso, and H. Lüth, J. Cryst. Growth. 289, 381 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.117
25.
25. V. Purushothaman, V. Ramakrishnan, and K. Jeganathan, RSC Adv. 2, 4802 (2012).
http://dx.doi.org/10.1039/c2ra01000c
26.
26. V. Purushothaman and K. Jeganathan, J. Phys. Chem. C 117, 7348 (2013).
http://dx.doi.org/10.1021/jp3120572
27.
27. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).
http://dx.doi.org/10.1063/1.2715119
28.
28. K. Jeganathan, X. Q. Shen, T. Ide, M. Shimizu, and H. Okumura, Jpn. J. Appl. Phys. 41, 4454 (2002).
http://dx.doi.org/10.1143/JJAP.41.4454
29.
29. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Luth, Nano Lett. 6, 704 (2006).
http://dx.doi.org/10.1021/nl052456q
30.
30. O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, and H. Riechert, Phy. Rev. B 81, 045302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045302
31.
31. D. Sam-Giao, R. Mata, G. Tourbot, J. Renard, A. Wysmolek, B. Daudin, and B. Gayral, J. Appl. Phys. 113, 043102 (2013).
http://dx.doi.org/10.1063/1.4775492
32.
32. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
http://dx.doi.org/10.1063/1.1868059
33.
33. F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhof, J. Appl. Phys. 104, 074309 (2008).
http://dx.doi.org/10.1063/1.2980341
34.
34. E. Matioli, S. Brinkley, K. M. Kelchner, Y-L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, Light: Science & Applications 1, e22 (2012).
http://dx.doi.org/10.1038/lsa.2012.22
35.
35. A. Lundskog, C-Wei. Hsu, K. F. Karlsson, S. Amloy, D. Nilsson, U. Forsberg, P. O. Holtz, and E. Janzén, Light: Science & Applications 3, e139 (2014).
http://dx.doi.org/10.1038/lsa.2014.20
36.
36. A. Kuang, H. Yuan, and H. Chen, Appl.Surface Science. 256, 6040 (2008).
http://dx.doi.org/10.1016/j.apsusc.2010.03.116
37.
37. B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, A. T. Kalghatgi, S. B. Krupanidhi, N. Kumar, and A. Sundaresan, Appl. Phys. Lett. 99, 162512 (2011).
http://dx.doi.org/10.1063/1.3654151
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4878976
Loading
/content/aip/journal/adva/4/5/10.1063/1.4878976
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4878976
2014-05-20
2016-12-09

Abstract

We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10−8 mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4878976.html;jsessionid=2hhmk_XgQIHPMglHAQsfDMTj.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4878976&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4878976&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4878976'
Right1,Right2,Right3,