Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4879287
1.
1. L. O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).
http://dx.doi.org/10.1109/TCT.1971.1083337
2.
2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
3.
3. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
4.
4. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325, 1518 (2009).
http://dx.doi.org/10.1126/science.1176580
5.
5. T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009).
http://dx.doi.org/10.1063/1.3187531
6.
6. I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, Phys. Rev. B 77, 035105 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035105
7.
7. D. Lee, D. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, Appl. Phys. Lett. 90, 122104 (2007).
http://dx.doi.org/10.1063/1.2715002
8.
8. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. 85, 5655 (2004).
http://dx.doi.org/10.1063/1.1831560
9.
9. H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, Appl. Phys. Lett. 91, 012901 (2007).
http://dx.doi.org/10.1063/1.2753101
10.
10. J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett. 10, 4105 (2010).
http://dx.doi.org/10.1021/nl102255r
11.
11. J. Martinez-Rincon, M. Di Ventra, and Y. V. Pershin, Phys. Rev. B 81, 195430 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195430
12.
12. J. Martinez-Rincon and Y. V. Pershin, IEEE Trans. Electron Devices 58, 1809 (2011).
http://dx.doi.org/10.1109/TED.2011.2126022
13.
13. J. E. Jang, S. N. Cha, Y. J. Choi, D. J. Kang, T. P. Butler, D. G. Hasko, J. E. Jung, J. M. Kim, and G. A. J. Amaratunga, Nat. Nanotechnol. 3, 26 (2008).
http://dx.doi.org/10.1038/nnano.2007.417
14.
14. R. W. Herfst, P. G. Steeneken, H. G. A. B. Huizing, and J. Schmitz, IEEE Trans. Semicond. Manuf. 21, 148 (2008).
http://dx.doi.org/10.1109/TSM.2008.2000285
15.
15. S. N. Shevchenko, S. H. W. van der Ploeg, M. Grajcar, E. Il'ichev, A. N. Omelyanchouk, and H.-G. Meyer, Phys. Rev. B 78, 174527 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.174527
16.
16. G. Csaba and P. Lugli, IEEE Trans. Nanotechnol. 8, 369 (2009).
http://dx.doi.org/10.1109/TNANO.2008.2010343
17.
17. C. Cagli, F. Nardi, and D. Ielmini, IEEE Trans. Electron Devices 56, 1712 (2009).
http://dx.doi.org/10.1109/TED.2009.2024046
18.
18. F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R.-W. Li, Appl. Phys. Lett. 96, 163505 (2010).
http://dx.doi.org/10.1063/1.3406121
19.
19. T. V. Kundozerova, A. M. Grishin, G. B. Stefanovich, and A. A. Velichko, IEEE Trans. Electron Devices 59, 1144 (2012).
http://dx.doi.org/10.1109/TED.2011.2182515
20.
20. J. P. Strachan, A. C. Torrezan, F. Miao, M. D. Pickett, J. J. Yang, W. Yi, G. Medeiros-Ribeiro, and R. S. Williams, IEEE Trans. Electron Devices 60, 2194 (2013).
http://dx.doi.org/10.1109/TED.2013.2264476
21.
21. E. Lehtonen, J. H. Poikonen, and M. Laiho, Electron. Lett. 46, 230 (2010).
http://dx.doi.org/10.1049/el.2010.3407
22.
22. Y. V. Pershin and M. Di Ventra, Proc. IEEE 100, 2071 (2012).
http://dx.doi.org/10.1109/JPROC.2011.2166369
23.
23. Y. V. Pershin and M. Di Ventra, Neural Netw. 23, 881 (2010).
http://dx.doi.org/10.1016/j.neunet.2010.05.001
24.
24. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett. 10, 1297 (2010).
http://dx.doi.org/10.1021/nl904092h
25.
25. Y. V. Pershin, S. La Fontaine, and M. Di Ventra, Phys. Rev. E 80, 021926 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.021926
26.
26. Y. V. Pershin and M. Di Ventra, IEEE Trans. Circuits Syst. I: Reg. Papers 57, 1857 (2010).
http://dx.doi.org/10.1109/TCSI.2009.2038539
27.
27. X. Wang, Y. Chen, Y. Gu, and H. Li, IEEE Electron Device Lett. 31, 20 (2010).
http://dx.doi.org/10.1109/LED.2009.2035643
28.
28. F. Chapeau-Blondeau and D. Rousseau, J. Stat. Mech. Theor. Exp. 2009, 01003 (2009).
http://dx.doi.org/10.1088/1742-5468/2009/01/P01003
29.
29. A. Patel and B. Kosko, IEEE Trans Sig. Process. 57, 1655 (2009).
http://dx.doi.org/10.1109/TSP.2009.2012893
30.
30. S. Sugiura, A. Ichiki, and Y. Tadokoro, IEEE Sig. Process. Lett. 19, 655 (2012).
http://dx.doi.org/10.1109/LSP.2012.2210873
31.
31. S. Mitaim and B. Kosko, Proc. IEEE 86, 2152 (1998).
http://dx.doi.org/10.1109/5.726785
32.
32. H. Ham, T. Matsuoka, and K. Taniguchi, IEICE Trans. Fundamentals E92-A, 1012 (2009).
http://dx.doi.org/10.1587/transfun.E92.A.1012
33.
33. A. Stotland and M. Di Ventra, Phys. Rev. E 85, 011116 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.011116
34.
34. G. A. Patterson, P. I. Fierens, A. A. Garcia, and D. F. Grosz, Phys. Rev. E 87, 012128 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.012128
35.
35. V. A. Slipko, Y. V. Pershin, and M. Di Ventra, Phys. Rev. E 87, 042103 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042103
36.
36. P. S. Landa and P. V. E. McClintock, J. Phys. A: Math. Gen. 33, L433 (2000).
http://dx.doi.org/10.1088/0305-4470/33/45/103
37.
37. H. Tanaka, Y. Tadokoro, and H. Iizuka, Electron. Lett. 49, 1446 (2013).
http://dx.doi.org/10.1049/el.2013.2311
38.
38. Y. N. Joglekar and S. J. Wolf, Eur. J. Phys. 30, 661 (2009).
http://dx.doi.org/10.1088/0143-0807/30/4/001
39.
39. I. C. Goknar, F. Oncul, and E. Minayi, IEEE Antennas Propag. Mag. 55, 304 (2013).
http://dx.doi.org/10.1109/MAP.2013.6529381
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4879287
Loading
/content/aip/journal/adva/4/5/10.1063/1.4879287
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4879287
2014-05-20
2016-09-29

Abstract

Memristor provides nonlinear response in the current-voltage characteristic and the memristance is modulated using an external voltage source. We point out by solving nonlinear equations that an optimal condition of the external voltage source exists for maximizing the memristance in such modulation scheme. We introduce a linear function to describe the nonlinear time response and derive an important design guideline; a constant ratio of the frequency to the amplitude of the external voltage source maximizes the memristance. The analysis completely accounts for the memristance behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4879287.html;jsessionid=_4NVlUPhMxNsoGH98a9afScg.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4879287&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4879287&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4879287'
Right1,Right2,Right3,