1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Nonlinear optical localization in embedded chalcogenide waveguide arrays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4879619
1.
1. M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, Appl. Phys. B 104 (3), 469 (2011).
http://dx.doi.org/10.1007/s00340-011-4660-7
2.
2. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1 (2011).
http://dx.doi.org/10.1038/srep00094
3.
3. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photon. 5(3), 141 (2011).
4.
4. V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Express 15(15), 9205 (2007).
http://dx.doi.org/10.1364/OE.15.009205
5.
5. M. Chauvet, G. Fanjoux, K. P. Huy, V. Nazabal, F. Charpentier, T. Billeton, G. Boudebs, M. Cathelinaud, and S.-P. Gorza, Opt. Lett. 34(12), 1804 (2009).
http://dx.doi.org/10.1364/OL.34.001804
6.
6. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, IEEE J. Sel. Top. Quantum Electron. 12(3), 360 (2006).
http://dx.doi.org/10.1109/JSTQE.2006.872727
7.
7. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, Opt. Express 15(22), 14414 (2007).
http://dx.doi.org/10.1364/OE.15.014414
8.
8. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, Opt. Express 17(4), 2182 (2009).
http://dx.doi.org/10.1364/OE.17.002182
9.
9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21(21), 1729 (1996).
http://dx.doi.org/10.1364/OL.21.001729
10.
10. R. R. Gattass and E. Mazur, Nat. Photon. 2(4), 219 (2008).
http://dx.doi.org/10.1038/nphoton.2008.47
11.
11. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Opt. Express 13(26), 10552 (2005).
http://dx.doi.org/10.1364/OPEX.13.010552
12.
12. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Opt. Express 14(13), 6055 (2006).
http://dx.doi.org/10.1364/OE.14.006055
13.
13. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, Opt. Express 15(24), 15776 (2007).
http://dx.doi.org/10.1364/OE.15.015776
14.
14. M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90(13), 131113 (2007).
http://dx.doi.org/10.1063/1.2718486
15.
15. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, Opt. Express 20(2), 1545 (2012).
http://dx.doi.org/10.1364/OE.20.001545
16.
16. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, Opt. Lett. 37(3), 392 (2012).
http://dx.doi.org/10.1364/OL.37.000392
17.
17. B. McMillen, B. Zhang, K. P. Chen, A. Benayas, and D. Jaque, Opt. Lett. 37(9), 1418 (2012).
http://dx.doi.org/10.1364/OL.37.001418
18.
18. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, J. Opt. Soc. Am. B 20(7), 1559 (2003).
http://dx.doi.org/10.1364/JOSAB.20.001559
19.
19. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81(16), 3383 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3383
20.
20. J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, J. Non-Cryst. Solids 317(3), 241 (2003).
http://dx.doi.org/10.1016/S0022-3093(02)01798-2
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4879619
Loading
/content/aip/journal/adva/4/5/10.1063/1.4879619
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4879619
2014-05-21
2014-11-27

Abstract

We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm2, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4879619.html;jsessionid=2g0qd1p0cpttc.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4879619&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nonlinear optical localization in embedded chalcogenide waveguide arrays
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4879619
10.1063/1.4879619
SEARCH_EXPAND_ITEM