Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4879807
1.
1. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, Photovoltaics, IEEE Journal of 4, 96 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2013.2282737
2.
2. M. Taguchi, A. Terakawa, E. Maruyama, and M. Tanaka, Prog. Photovolt: Res. Appl. 13, 481 (2005).
http://dx.doi.org/10.1002/pip.646
3.
3. T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan, V. Yelundur, H. M. Branz, A. Rohatgi, and Q. Wang, 955 (2005).
4.
4. M. Ghannam, G. Shehadah, Y. Abdulraheem, and J. Poortmans, “Basic Understanding of the role of the interfacial inversion layer in the operation of silicon solar cells with a-Si/c-Si heterojunction (HIT),” in the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September - 04 October 2013, edited by A. Mine, A. Jager-Waldau, and P. Helm (European Commission - DG Joint Research Centre Via E. Fermi 1 21020 Ispra (VA) Italy, 2013).
5.
5. T. F. Schulze, H. N. Beushausen, C. Leendertz, A. Dobrich, B. Rech, and L. Korte, Appl. Phys. Lett. 96, 252102 (2010).
http://dx.doi.org/10.1063/1.3455900
6.
6. S. Olibet, E. Vallat Sauvain, L. Fesquet, C. Monachon, A. Hessler Wyser, J. Damon Lacoste, S. De Wolf, and C. Ballif, Phys. Status Solidi A 207, 651 (2010).
http://dx.doi.org/10.1002/pssa.200982845
7.
7. T. D. Kang, H. Lee, S. J. Park, J. Jang, and S. Lee, J. Appl. Phys. 92, 2467 (2002).
http://dx.doi.org/10.1063/1.1499980
8.
8. R. W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce, and C. R. Wronski, Solar Energy Materials and Solar Cells 78, 143 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00436-1
9.
9. J. Tauc, R. Grigorovici, and A. Vancu, Physica Status Solidi (B) 15, 627 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
10.
10. G. D. Cody, T. Tiedje, B. Abeles, T. D. Moustakas, B. Brooks, and Y. Goldstein, J. Phys. Colloques 42, C4 (1981).
http://dx.doi.org/10.1051/jphyscol:1981463
11.
11. G. E. Jellison Jr. and F. A. Modine, Appl. Phys. Lett. 69, 2137 (1996).
http://dx.doi.org/10.1063/1.118155
12.
12. H. Nguyen, Y. Lu, S. Kim, M. Wakagi, and R. Collins, Phys. Rev. Lett. 74, 3880 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3880
13.
13. M. Beaudoin, M. Meunier, and C. J. Arsenault, Phys. Rev. B (1993).
14.
14. J. Heitmann, F. Müller, M. Zacharias, and U. Gösele, Advanced Materials 17, 795 (2005).
http://dx.doi.org/10.1002/adma.200401126
15.
15. S. Adachi, H. Mori, and S. Ozaki, Phys. Rev. B 66, 153201 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.153201
16.
16. P. J. van den Oever, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 101, 123529 (2007).
http://dx.doi.org/10.1063/1.2749466
17.
17. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, J. Appl. Phys. 92, 2424 (2002).
http://dx.doi.org/10.1063/1.1497462
18.
18. C.-R. Yang, C.-H. Yang, and P.-Y. Chen, Journal of Micromechanics and Microengineering 15, 2028 (2005).
http://dx.doi.org/10.1088/0960-1317/15/11/006
19.
19. H. Fujiwara, Spectroscopic Ellipsometry (John Wiley & Sons, 2007).
20.
20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
21.
21. R. W. Collins, J. Koh, A. S. Ferlauto, P. I. Rovira, Y. Lee, R. J. Koval, and C. R. Wronski, Thin Solid Films 364, 129 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00925-6
22.
22. T. Yuguchi, Y. Kanie, N. Matsuki, and H. Fujiwara, J. Appl. Phys. 111, 3509 (2012).
http://dx.doi.org/10.1063/1.4704158
23.
23. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, J. Appl. Phys. 111, 034307 (2012).
http://dx.doi.org/10.1063/1.3680884
24.
24. S. Furukawa and T. Miyasato, Phys. Rev. B 38, 5726 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.5726
25.
25. D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, J. Appl. Phys. 93, 4173 (2003).
http://dx.doi.org/10.1063/1.1538344
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4879807
Loading
/content/aip/journal/adva/4/5/10.1063/1.4879807
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4879807
2014-05-22
2016-12-07

Abstract

An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed increase in the optical bandgap of a-Si:H films close to the a-Si:H/cSi interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4879807.html;jsessionid=RBhGXKDHkrdlFCzzG3pYR0GY.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4879807&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4879807&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4879807'
Right1,Right2,Right3,