Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4879809
1.
1. T. Kuehn and R. Goldstein, Journal of Heat Transfer 100, 635 (1978).
http://dx.doi.org/10.1115/1.3450869
2.
2. A. Mojtabi and J. P. Caltagirone, Physics of Fluids 22, 1208 (1979).
http://dx.doi.org/10.1063/1.862698
3.
3. Y. Wang and H. H. Bau, Physics of Fluids 31, 2467 (1988).
http://dx.doi.org/10.1063/1.866600
4.
4. G. Guj and F. Stella, Numerical Heat Transfer, Part A: Applications 27, 89 (1995).
http://dx.doi.org/10.1080/10407789508913690
5.
5. D. C. Kuo, J. C. Morales, and K. S. Ball, Journal of Heat Transfer 121, 610 (1999).
http://dx.doi.org/10.1115/1.2826023
6.
6. M. P. Dyko and K. Vafai, Physics of Fluids 14, 1291 (2002).
http://dx.doi.org/10.1063/1.1445423
7.
7. R. D. Wordsworth, P. L. Read, and Y. H. Yamazaki, Physics of Fluids 20, 126602 (2008).
http://dx.doi.org/10.1063/1.2990042
8.
8. M. Carrasco-Teja and I. A. Frigaard, Physics of Fluids 21, 073102 (2009).
http://dx.doi.org/10.1063/1.3193712
9.
9. E. Fattahi, M. Farhadi, and K. Sedighi, International Journal of Thermal Sciences 49, 2353 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.07.014
10.
10. Z. H. Cao, K. Luo, H. L. Yi, and H. P. Tan, International Journal of Heat and Mass Transfer 65, 409 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.06.019
11.
11. K. Lari, M. Baneshi, S. A. Gandjalikhan Nassab, A. Komiya, and S. Maruyama, International Journal of Heat and Mass Transfer 54, 5087 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.026
12.
12. K. Lari, M. Baneshi, S. A. G. Nassab, A. Komiya, and S. Maruyama, Numerical Heat Transfer, Part A: Applications 61, 61 (2012).
http://dx.doi.org/10.1080/10407782.2012.638504
13.
13. F. Moufekkir, M. A. Moussaoui, A. Mezrhab, M. Bouzidi, and N. Laraqi, International Journal of Thermal Sciences 63, 65 (2013).
http://dx.doi.org/10.1016/j.ijthermalsci.2012.07.015
14.
14. F. Moufekkir, M. A. Moussaoui, A. Mezrhab, H. Naji, and D. Lemonnier, Journal of Quantitative Spectroscopy and Radiative Transfer 113, 1689 (2012).
http://dx.doi.org/10.1016/j.jqsrt.2012.04.017
15.
15. R. E. Powe, C. T. Carley, and E. Bishop, Journal of Heat Transfer 91, 310 (1969).
http://dx.doi.org/10.1115/1.3580158
16.
16. M. P. Dyko, K. Vafai, and A. K. Mojtabi, Journal of Fluid Mechanics 381, 27 (1999).
http://dx.doi.org/10.1017/S0022112098002948
17.
17. F. H. Busse, Reports on Progress in Physics 41, 1929 (1978).
http://dx.doi.org/10.1088/0034-4885/41/12/003
18.
18. R. J. A. Janssen and R. A. W. M. Henkes, Physics of Fluids 8, 62 (1996).
http://dx.doi.org/10.1063/1.868814
19.
19. J. S. Yoo, International Journal of Heat and Mass Transfer 42, 3279 (1999).
http://dx.doi.org/10.1016/S0017-9310(98)00384-6
20.
20. J. Mizushima and S. Hayashi, Physics of Fluids 13, 99 (2001).
http://dx.doi.org/10.1063/1.1329649
21.
21. J. Mizushima, S. Hayashi, and T. Adachi, International Journal of Heat and Mass Transfer 44, 1249 (2001).
http://dx.doi.org/10.1016/S0017-9310(00)00188-5
22.
22. S. Xin and P. Le Quéré, Physics of Fluids 13, 2529 (2001).
http://dx.doi.org/10.1063/1.1388054
23.
23. I. Mercader, O. Batiste, L. Ramírez-Piscina, X. Ruiz, S. Rüdiger, and J. Casademunt, Physics of Fluids 17, 104108 (2005).
http://dx.doi.org/10.1063/1.2107907
24.
24. G. Petrone, E. Chénier, and G. Lauriat, Physics of Fluids 18, 104107 (2006).
http://dx.doi.org/10.1063/1.2364027
25.
25. D. Angeli, G. S. Barozzi, M. W. Collins, and O. M. Kamiyo, International Journal of Thermal Sciences 49, 2231 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.08.002
26.
26. L. Soucasse, P. Rivière, A. Soufiani, S. Xin, and P. Le Quéré, Physics of Fluids 26, 024105 (2014).
http://dx.doi.org/10.1063/1.4864265
27.
27. S. Chen and G. D. Doolen, Annual Review of Fluid Mechanics 30, 329 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
28.
28. Y. Peng, C. Shu, and Y. T. Chew, Physical Review E 68, 026701 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.026701
29.
29. S. S. Ghai, W. T. Kim, R. A. Escobar, C. H. Amon, and M. S. Jhon, Journal of Applied Physics 97, 10P703 (2005).
http://dx.doi.org/10.1063/1.1853896
30.
30. P. H. Kao and R. J. Yang, International Journal of Heat and Mass Transfer 50, 3315 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.035
31.
31. M. K. Banda, A. Klar, and M. Seaïd, Journal of Computational Physics 226, 1408 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.05.030
32.
32. S. C. Mishra, A. Lankadasu, and K. N. Beronov, International Journal of Heat and Mass Transfer 48, 3648 (2005).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.10.041
33.
33. O. S. Azmir and C. S. N. Azwadi, AIP Conference Proceedings 1225, 1004 (2010).
http://dx.doi.org/10.1063/1.3464838
34.
34. B. Mondal and X. Li, International Journal of Heat and Mass Transfer 53, 4935 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.052
35.
35. B. Mondal and S. C. Mishra, Numerical Heat Transfer, Part A: Applications 55, 18 (2008).
http://dx.doi.org/10.1080/10407780802603121
36.
36. O. Filippova, S. Succi, F. Mazzocco, C. Arrighetti, G. Bella, and D. Hänel, Journal of Computational Physics 170, 812 (2001).
http://dx.doi.org/10.1006/jcph.2001.6764
37.
37. A. Wang, M. F. Modest, D. C. Haworth, and L. Wang, Journal of Quantitative Spectroscopy and Radiative Transfer 109, 269 (2008).
http://dx.doi.org/10.1016/j.jqsrt.2007.08.030
38.
38. N. A. Krishna and S. C. Mishra, Journal of Quantitative Spectroscopy and Radiative Transfer 102, 432 (2006).
http://dx.doi.org/10.1016/j.jqsrt.2006.02.024
39.
39. M. Sakami, A. Charette, and V. Le Dez, Journal of Quantitative Spectroscopy and Radiative Transfer 56, 517 (1996).
http://dx.doi.org/10.1016/0022-4073(96)00082-9
40.
40. C. Kim, M. Y. Kim, M. J. Yu, and S. C. Mishra, Numerical Heat Transfer, Part B: Fundamentals 57, 227 (2010).
http://dx.doi.org/10.1080/10407791003749134
41.
41. H. Grissa, F. Askri, M. Ben Salah, and S. Ben Nasrallah, Journal of Quantitative Spectroscopy and Radiative Transfer 111, 144 (2010).
http://dx.doi.org/10.1016/j.jqsrt.2009.07.006
42.
42. L. H. Liu, J. Y. Tan, and B. X. Li, Journal of Quantitative Spectroscopy and Radiative Transfer 101, 237 (2006).
http://dx.doi.org/10.1016/j.jqsrt.2005.11.017
43.
43. K. Luo, Z. H. Cao, H. L. Yi, and H.-P. Tan, Journal of Quantitative Spectroscopy and Radiative Transfer 135, 66 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.11.015
44.
44. R. S. Maier, R. S. Bernard, and D. W. Grunau, Physics of Fluids 8, 1788 (1996).
http://dx.doi.org/10.1063/1.868961
45.
45. M. A. Gallivan, D. R. Noble, J. G. Georgiadis, and R. O. Buckius, International Journal for Numerical Methods in Fluids 25, 249 (1997).
http://dx.doi.org/10.1002/(SICI)1097-0363(19970815)25:3<249::AID-FLD546>3.0.CO;2-7
46.
46. D. Yu, R. Mei, L.-S. Luo, and W. Shyy, Progress in Aerospace Sciences 39, 329 (2003).
http://dx.doi.org/10.1016/S0376-0421(03)00003-4
47.
47. Z. Guo, C. Zheng, and B. Shi, Physics of Fluids 14, 2007 (2002).
http://dx.doi.org/10.1063/1.1471914
48.
48. J. M. Zhao, J. Y. Tan, and L. H. Liu, Journal of Computational Physics 232, 431 (2013).
http://dx.doi.org/10.1016/j.jcp.2012.08.020
49.
49. B. Nayroles, G. Touzot, and P. Villon, Computational Mechanics 10, 307 (1992).
http://dx.doi.org/10.1007/BF00364252
50.
50. H. Wendland, Advances in Computational Mathematics 4, 389 (1995).
http://dx.doi.org/10.1007/BF02123482
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4879809
Loading
/content/aip/journal/adva/4/5/10.1063/1.4879809
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4879809
2014-05-22
2016-12-03

Abstract

Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number and Prandtl number with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter and optical thickness . Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4879809.html;jsessionid=bxl7-K6Bh6VRB-41m4ekACm7.x-aip-live-03?itemId=/content/aip/journal/adva/4/5/10.1063/1.4879809&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4879809&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4879809'
Right1,Right2,Right3,