Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Wuerker, H. Shelton, and R. Langmuir, “Electrodynamic containment of charged particles,” Journal of Applied Physics 30, 342349 (1959).
2. W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62, 531540 (1990).
3. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 40914094 (1995).
4. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a fundamental quantum logic gate,” Phys. Rev. Lett. 75, 47144717 (1995).
5. T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang, “A quantum logic array microarchitecture: Scalable quantum data movement and computation,” in Proceedings of the 38th International Symposium on Microarchitecture MICRO-38 (2005), pp. 305318.
6. J. Kim, S. Pau, Z. Ma, H. R. McLellan, J. V. Gates, A. Kornblit, R. E. Slusher, R. M. Jopson, I. Kang, and M. Dinu, “System design for large-scale ion trap quantum information processor,” Quantum Information & Computation 5, 515537 (2005).
7. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709711 (2002).
8. A. Steane, “The ion trap quantum information processor,” Applied Physics B 64, 623643 (1997).
9. C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
10. A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas, “High-fidelity readout of trapped-ion qubits,” Phys. Rev. Lett. 100, 200502 (2008).
11. J. Bollinger, D. Heizen, W. Itano, S. Gilbert, and D. Wineland, “A 303-mhz frequency standard based on trapped Be+ ions,” Instrumentation and Measurement, IEEE Transactions on 40, 126128 (1991).
12. C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland, “Long-lived qubit memory using atomic ions,” Phys. Rev. Lett. 95, 060502 (2005).
13. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412415 (2003).
14. P. C. Haljan, K.-A. Brickman, L. Deslauriers, P. J. Lee, and C. Monroe, “Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion,” Phys. Rev. Lett. 94, 153602 (2005).
15. F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the cirac-zoller controlled-NOT quantum gate,” Nature 422, 408411 (2003).
16. S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Haffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the deutsch-jozsa algorithm on an ion-trap quantum computer,” Nature 421, 4850 (2003).
17. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256259 (2000).
18. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422, 412415 (2003).
19. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘schrodinger cat' state,” Nature 438, 639642 (2005).
20. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 6871 (2007).
21. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153157 (2004).
22. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstatter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482485 (2012).
23. C. Auchter, C.-K. Chou, T. W. Noel, and B. B. Blinov, “Ion-photon entanglement and bell inequality violation with 138ba+,” (2013), arXiv:1310.0028.
24. J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quantum Info. Comput. 9, 181202 (2009).
25. S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006).
26. D. Stick, W. Hensinger, S. Olmschenk, M. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nature Physics 2, 3639 (2005).
27. J. Amini, D. Denison, C. Doret, D. Faircloth, A. Harter, H. Hayden, T. Killian, D. Landgren, T. Merrill, A. Ozakin, C. Pai, C. Shappert, R. Slusher, K. Stevens, C. Volin, and K. Wright, “GTRI Ion Traps for the MUSIQC Program,” Poster presentation at the MQCO Program Review, Austin TX (2011).
28. D. Allcock, T. Harty, H. Janacek, N. Linke, C. Ballance, A. Steane, D. Lucas, R. Jarecki, S. Habermehl, M. Blain, et al.Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap,” Applied Physics B: Lasers and Optics 17 (2012).
29. J. Amini, H. Uys, J. Wesenberg, S. Seidelin, J. Britton, J. Bollinger, D. Leibfried, C. Ospelkaus, A. VanDevender, and D. Wineland, “Toward scalable ion traps for quantum information processing,” New journal of Physics 12, 033031 (2010).
30. D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain, “Design, fabrication and experimental demonstration of junction surface ion traps,” New Journal of Physics 13, 075018 (2011).
31. B. Tabakov, J. Sterk, F. Benito, R. Haltli, C. Tigges, D. Stick, M. Blain, and D. Moehring, “Trapping ions in a segmented ring trap,” Bulletin of the American Physical Society 57 (2012).
32. J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, et al.Demonstration of integrated microscale optics in surface-electrode ion traps,” New Journal of Physics 13, 103005 (2011).
33. G. Brady, A. Ellis, D. Moehring, D. Stick, C. Highstrete, K. Fortier, M. Blain, R. Haltli, A. Cruz-Cabrera, R. Briggs, et al.Integration of fluorescence collection optics with a microfabricated surface electrode ion trap,” Applied Physics B: Lasers and Optics 103, 801808 (2011).
34. A. Eltony, S. Wang, G. Akselrod, P. Herskind, and I. Chuang, “Transparent ion trap with integrated photodetector,” Applied Physics Letters 102, 054106 (2013).
35. T. Kim, P. Herskind, and I. Chuang, “Surface-electrode ion trap with integrated light source,” Applied Physics Letters 98, 214103 (2011).
36. D. Allcock, T. Harty, C. Ballance, B. Keitch, N. Linke, D. Stacey, and D. Lucas, “A microfabricated ion trap with integrated microwave circuitry,” Applied Physics Letters 102, 044103 (2013).
37. W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Physical Review A 22, 1137 (1980).
38. T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57, 16961698 (1986).
39. A. Steele, L. Churchill, P. Griffin, and M. Chapman, “Photoionization and photoelectric loading of barium ion traps,” Physical Review A 75, 053404 (2007).
40. G. Shu, C.-K. Chou, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluorescence collection and ion imaging with the “tack” ion trap,” J. Opt. Soc. Am. B 28, 28652870 (2011).
41.Tactic electronics part 100-4680-001A.
42.Accu-Glass Products part 104101.
43.Accu-Glass Products part 25D4-133-CF600TAPPED.
44.Rogers ceramic (RT/duroid® 6002).
45.Manufactured in-house.
46.Mill-Max part 0326-3-19-15-06-27-10-0.
47.Keystone Electronics part 1358-2.
48.Mill-Max part 0038-3-17-15-30-27-02-0.
49.30 AWG, silver plated copper wire with Kapton shielding.
50.Kester no-clean lead free solder (95.5% Sn, 3% Ag, 0.5% Cu).
51.Chemtronics ES132.
52.Kimbal Physics part MCF600-SphOct-F2C8.
53. A. Härter, A. Krükow, A. Brunner, and J. Hecker Denschlag, “Long-term drifts of stray electric fields in a paul trap,” Applied Physics B 17 (2013).
54. D. Rotter, “Quantum feedback and quantum correlation measurements with a single Barium ion,” Ph.D. thesis, Leopold-Franzens-Universität Innsbruck (2008).
55. G. Leschhorn, T. Hasegawa, and T. Schaetz, “Efficient photo-ionization for barium ion trapping using a dipole-allowed resonant two-photon transition,” Applied Physics B 108, 159165 (2012).
56.In house design ECDL.
57.Toptica DL-Pro.
58.Custom frequency doubling crystal from HCP photonics, single fiber pigtail.
59.Toptica DL-100.
60.Toptica DL-100.
61. M. D. Davidson, L. C. Snoek, H. Volten, and A. Doenszelmann, “Oscillator strengths and branching ratios of transitions between low-lying levels in the barium II spectrum,” Astronomy and Astrophysics 255, 457 (1992).
62. J. J. Curry, “Compilation of Wavelengths, Energy Levels, and Transition Probabilities for Ba I and Ba II,” Journal of Physical and Chemical Reference Data 33, 725746 (2004).
63.Strictly 650 nm is outside the transmission range but in practice can be coupled without difficulty in some fibers of this type due to manufacturing variations.
64.Thor labs DMLP567.
65.Custom design.
66.Mittitoyo M-Plan APO.
67.Hammamatsu H10682-210.
68.Luca R series from Andor Technology.
69.Manufactured by Alvatec Alkali Vacuum Technologies GmbH.
70.Shivalik Bimetals type 721-112. Metals are 74-24-1 Alloy and Invar 155 Alloy.
71. Analog Devices Inc, “32-Channel, 16-/14-Bit, Serial Input, Voltage Output DAC AD5372/AD5373” (2013).
72. Altera Corporation, “Cyclone II Device Handbook, Volume 1” (2013).
73.User Datagram Protocol.
74. J. Siverns, L. Simkins, S. Weidt, and W. Hensinger, “On the application of radio frequency voltages to ion traps via helical resonators,” Applied Physics B 107, 921934 (2012).
75. E. Iskrenova-Tchoukova and M. S. Safronova, “Theoretical study of lifetimes and polarizabilities in Ba+,” Phys. Rev. A 78, 012508 (2008).
76. M. Sudakov, N. Konenkov, D. Douglas, and T. Glebova, “Excitation frequencies of ions confined in a quadrupole field with quadrupole excitation,” Journal of the American Society for Mass Spectrometry 11, 1018 (2000).
77. R. Slusher, J. Kim, A. Harter, J. Amini, D. Denison, D. Faircloth, H. Hayden, T. Killian, A. Ozakin, F. Shaikh, et al., “Scalable Multiplexed Ion Trap (SMIT) Program,” Tech. Rep. (Georgia Tech Research Institute Atlanta, Signature technology lab, 2010).
78.BEM solutions and optimization methods generously supplied by C.E.Volin, Georgia Tech Research Institute.

Data & Media loading...


Article metrics loading...



We have developed a vacuum chamber and control system for rapid testing of microfabricated surface ion traps. Our system is modular in design and is based on an in-vacuum printed circuit board with integrated filters. We have used this system to successfully trap and cool barium ions and have achieved ion ‘dark' lifetimes of 31.6 s ± 3.4 s with controlled shuttling of ions. We provide a detailed description of the ion trap system including the in-vacuum materials used, control electronics and neutral atom source. We discuss the challenges presented in achieving a system which can work reliably over two years of operations in which the trap under test was changed at least 10 times.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd