Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4880039
1.
1. J. P. Davis, C. Deeney, M. D. Knudson, R. W. Lemke, T. D. Pointon, and D. E. Bliss, Phys. Plasmas 12, 056310 (2005).
http://dx.doi.org/10.1063/1.1871954
2.
2. D. C. Swift, Damian, and R. P. Johnson, Phys. Rev. E 71, 056310 (2005).
3.
3. N. Amadou, E. Brambrink, A. Benuzzi-Mounaix, G. Huser, F. Guyot, S. Mazevet, T. d. R. G. Morard, T. Vinci, K. Myanishi, N. Ozaki, R. Kodama, T. Boehly, O. Henry, D. Raffestin, and M. Koenig, High Energy Density Physics 9, 243 (2013).
http://dx.doi.org/10.1016/j.hedp.2013.01.003
4.
4. K. Lorenz, M. Edwards, A. Jankowski, S. Pollaine, R. Smith, and B. Remington, High Energy Density Physics 2, 113 (2006).
http://dx.doi.org/10.1016/j.hedp.2006.08.001
5.
5. J. Edwards, K. Lorenz, B. Remington, S. Pollaine, J. Colvin, B. F. L. D. Braun, D. Reisman, J. McNaney, J. A. Greenough, R. Wallace, H. Louis, and D. Kalantar, Phys. Rev. Lett. 92, 075002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.075002
6.
6. R. F. Smith, S. M. Pollaine, S. J. Moon, K. T. Lorenz, P. M. Celliers, J. H. Eggert, H. Park, and G. Collins, Phys. Plasmas 14, 057105 (2007).
http://dx.doi.org/10.1063/1.2712450
7.
7. A. Laio, S. Bernard, G. Chiarotti, S. Scandolo, and E. Tosatti, Science 287, 1027 (2000).
http://dx.doi.org/10.1126/science.287.5455.1027
8.
8. B. Remington, R. P. Drake, and D. D. Ryutov, Rev. Mod. Phys. 78, 755 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.755
9.
9. D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. Hamza, R. E. Rudd, and G. Collins, Phys. Rev. Lett. 102, 075503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.075503
10.
10. R. F. Smith, J. H. Eggert, R. E. Rudd, D. C. Swift, C. A. Bolme, and G. W. Collins, J. Appl. Phys. 110, 123515 (2011).
http://dx.doi.org/10.1063/1.3670001
11.
11. R. Fowles and R. F. Williams, J. Appl. Phys. 41, 360 (1970).
http://dx.doi.org/10.1063/1.1658348
12.
12. M. Cowperthwaite and R. F. William, J. Appl. Phys. 42, 456 (1971).
http://dx.doi.org/10.1063/1.1659623
13.
13. L. Seaman, J. Appl. Phys. 45, 4303 (1974).
http://dx.doi.org/10.1063/1.1663050
14.
14. J. B. Aidun and Y. M. Gupta, J. Appl. Phys. 69, 6998 (1991).
http://dx.doi.org/10.1063/1.347639
15.
15. D. Hayes, “Bakward intergration of the equations of motion to correct for free surface perturbations,” Tech. Rep. SAND2001-1440 (Sandia Laboratory, 2001).
16.
16. S. D. Rothman, J. P. Davis, J. Maw, C. M. Robinson, K. Parker, and J. Palmer, J. Phys. D: Appl. Phys. 38, 733 (2005).
http://dx.doi.org/10.1088/0022-3727/38/5/011
17.
17. S. D. Rothman and J. Maw, J. Phys. IV (Proceedings) 134, 745 (2006).
http://dx.doi.org/10.1051/jp4:2006134115
18.
18. M. E. Kipp and R. J. Lawrence, “A one-dimensional finite-difference wave propagation code,” Tech. Rep. SAND1981-0930 (Sandia Laboratory, 1981).
19.
19. W. Li, One-Dimensional Nonsteady Flow and Shock Waves (Defense Industry Press, Beijing, 2003).
20.
20. W. Li, Simplified equation of state p = p(ρ, E) and p = p(ρ, T) for condensed matter, in shock waves in condensed matter (Plenum press, New York and London, 1986).
21.
21. F. H. Harlow and A. A. Amsden, Fluid dynamics (LA-4700, Los Alamos Scientific Laboratory, 1971).
22.
22. F. H. Harlow and W. E. Pracht, Phys. Fluids. 9, 1951 (1966).
http://dx.doi.org/10.1063/1.1761549
23.
23. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Interscience, New York, 1948).
24.
24. M. H. Rice, R. G. McQueen, and J. M. Walsh, Compression of Solids by Strong Shock Waves (Academic Press, New York, 1958).
25.
25. S. Atzeni and J. M. ter Vehn, The Physics of Inertial Fusion (Oxford University Press, New York, 2004).
26.
26. D. B. Reisman, W. G. Wolfer, A. Elsholz, and M. D. Furnish, J. Appl. Phys. 93, 8952 (2003).
http://dx.doi.org/10.1063/1.1571969
27.
27. J. P. Davis, J. Appl. Phys. 99, 103512 (2006).
http://dx.doi.org/10.1063/1.2196110
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4880039
Loading
/content/aip/journal/adva/4/5/10.1063/1.4880039
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4880039
2014-05-23
2016-09-30

Abstract

A characteristic method has been developed using a Murnaghan-form isentropic equation and characteristics, which has been verified by example uses. General information of two ramp compression experiments was calculated, which matched experimental ones well except for some tiny distinctions. Finally, the factors influencing the precision of this model were discussed and other practical applications were presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4880039.html;jsessionid=cDd5LaVclm5p_kycnCWqC38v.x-aip-live-02?itemId=/content/aip/journal/adva/4/5/10.1063/1.4880039&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4880039&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4880039'
Right1,Right2,Right3,