Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. L. Wang, Adv. Mater. 19, 889 (2007).
2. J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, J. Phys. Chem. B 109, 9 (2005);
2.W. I. Park, J. S. Kim, G. C. Yi, and H. J. Lee, Adv. Mater. 17, 1393 (2005).
3. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, Nano Lett. 6, 2768 (2006).
4. J. Zhou, P. Fei, Y. D. Gu, W. J. Mai, Y. F. Gao, R. S. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3973 (2008).
5. Z. L. Wang and J. H. Song, Science 312, 242 (2006).
6. X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
7. J. Zhou, Y. D. Gu, P. Fei, W. J. Mai, Y. F. Gao, R. S. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3035 (2008).
8. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998);
8.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
9. M. H. Huang, S. Mao, H. Feich, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
10. H. Kind, H. Yang, B. Messer, M. Law, and P. D. Yang, Adv. Mater. 14, 158 (2002).<158::AID-ADMA158>3.0.CO;2-W
11. J. C. Johnsom, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, Nano. Lett. 4, 197 (2004).
12. C. H. Lee, G. C. Yi, Y. M. Zuev, and P. Kim, Appl. Phys. Lett. 94, 022106 (2009).
13. A. J. Kulkarni and M. Zhou, Appl. Phys. Lett. 88, 141921 (2006);
13.A. J. Kulkarni and M. Zhou, Nanotechnology 18, 435706 (2007).
14. C. T. Bui, R. G. Xie, M. R. Zheng, Q. X. Zhang, C. H. Sow, B. W. Li, and J. T. L. Thong, Small 8, 738 (2012).
15. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Nature 451, 163 (2008).
16. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, Nature 451, 168 (2008).
17. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
18. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
19. D. Weissenberger, M. Dürrschnabel, D. Gerthsen, F. Pérez-Willard, A. Reiser, G. M. Prinz, M. Feneberg, K. Thonke, and R. Sauer, Appl. Phys. Lett. 91, 132110 (2007).
20. L. D. Yao, D. Weissenberger, M. Dürrschnabel, D. Gerthsen, I. Tischer, M. Wiedenmann, M. Feneberg, A. Reiser, and K. Thonke, J. Appl. Phys. 105, 103521 (2009).
21. L. Shi, Ph.D. dissertation (University of California, Berkeley, 2001).
22. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
23. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Trans. 125, 881 (2003).
24. H. Ryssel and I. Ruge, Ion Implantation, (Wiley, New York, 1986); http/
25. A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, and T. Venkatesan, Solid Stat. Elec. 46, 1665 (2002);
25.L. J. Brillson and Y. Lu, J. Appl. Phys. 109, 121301 (2011);
25.J. H. He, J. J. Ke, P. H. Chang, K. T. Tsai, P. C. Yang, and I. M. Chan, Nanoscale 4, 3399 (2012);
25.H. C. Wua, Y. C. Peng, and C. C. Chen, Optical Mat. 35, 509 (2013).
26. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
27. L. Lu, W. Yi, and D. L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001).
28. X. Zhang and C. P. Grigoropoulos, Rev. Sci. Instrum. 66, 1115 (1995).
29. Q. G. Zhang, B. Y. Cao, X. Zhang, M. Fujii, and K. Takahashi, Phys. Rev. B 74, 134109 (2006).
30. M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen, and S. J. Lai, Appl. Phys. Lett. 92, 063101 (2008).
31. J. Chen, G. Zhang, and B. Li, Appl. Phys. Lett. 95, 073117 (2009).
32. G. P. Srivastava, The Physics of Phonons (IOP, Philadelphia, 1990), p. 99;
32.C. M. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).
33. P. G. Klemens, in Solid State Physics, edited by F. Seitz and D. Tumbull (Academic, New York, 1958), Vol. 7, p. 1.
34. E. F. Steigmeier and B. Abeles, Phys. Rev. 136, A1149 (1964);
34.C. B. Vining, J. Appl. Phys. 69, 331 (1991).
35.For simplicity we can also take directly anharmonic decay rate including the Umklapp and normal three phonon scattering rate from experiment data [R. Cuscó, et al., Phys. Rev. B 75, 165202 (2007)] τiA = 1/(1/τiN + τiU) = 1.12, 0.62 and 0.59 ps for E2high, A1(LO) and E1(LO) modes respectively. The reason is that the contribution of anharmonic scattering to thermal conductivity can be neglected comparing with surface roughness or point defect scattering.
36. R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).
37. C. Glassbrener and A. Slack, Phys. Rev. 134, A1058 (1964).
38. N. Mingo, Phys. Rev. B 68, 113308 (2003).
39. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009).
40. A. W. Hewat, Solid State Commun. 8, 187 (1970).
41. K. Thoma, B. Dorner, G. Duesing, and W. Wegener, Solid State Commun. 15, 1111 (1974).
42. J. Serrano, F. Widulle, A. H. Romero, M. Cardona, R. Lauck, and A. Rubio, Phys. Status Solidi B 235, 260 (2003).
43. R. A. Robie and J. L. Edwards, J. Appl. Phys. 37, 2659 (1966).
44. F. Decremps, J. P. Porres, A. M. Saitta, J. C. Chervin, and A. Polian, Phys. Rev. B 65, 092101 (2002).
45. J. Serrano, A. H. Romero, F. J. Manjón, R. Lauck, M. Cardona, and A. Rubio, Phys. Rev. B 69, 094306 (2004).
46. M. Ohtaki, K. Araki, and K. Yamamoto, J. Elec. Mater. 38, 1234 (2009).

Data & Media loading...


Article metrics loading...



The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga+) implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd