1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/5/10.1063/1.4880240
1.
1. Z. L. Wang, Adv. Mater. 19, 889 (2007).
http://dx.doi.org/10.1002/adma.200602918
2.
2. J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, J. Phys. Chem. B 109, 9 (2005);
http://dx.doi.org/10.1021/jp0452599
2.W. I. Park, J. S. Kim, G. C. Yi, and H. J. Lee, Adv. Mater. 17, 1393 (2005).
http://dx.doi.org/10.1002/adma.200401732
3.
3. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, Nano Lett. 6, 2768 (2006).
http://dx.doi.org/10.1021/nl061802g
4.
4. J. Zhou, P. Fei, Y. D. Gu, W. J. Mai, Y. F. Gao, R. S. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3973 (2008).
http://dx.doi.org/10.1021/nl802497e
5.
5. Z. L. Wang and J. H. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
6.
6. X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
http://dx.doi.org/10.1126/science.1139366
7.
7. J. Zhou, Y. D. Gu, P. Fei, W. J. Mai, Y. F. Gao, R. S. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3035 (2008).
http://dx.doi.org/10.1021/nl802367t
8.
8. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998);
http://dx.doi.org/10.1063/1.121620
8.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
http://dx.doi.org/10.1038/nmat1284
9.
9. M. H. Huang, S. Mao, H. Feich, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
http://dx.doi.org/10.1126/science.1060367
10.
10. H. Kind, H. Yang, B. Messer, M. Law, and P. D. Yang, Adv. Mater. 14, 158 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
11.
11. J. C. Johnsom, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, Nano. Lett. 4, 197 (2004).
http://dx.doi.org/10.1021/nl034780w
12.
12. C. H. Lee, G. C. Yi, Y. M. Zuev, and P. Kim, Appl. Phys. Lett. 94, 022106 (2009).
http://dx.doi.org/10.1063/1.3067868
13.
13. A. J. Kulkarni and M. Zhou, Appl. Phys. Lett. 88, 141921 (2006);
http://dx.doi.org/10.1063/1.2193794
13.A. J. Kulkarni and M. Zhou, Nanotechnology 18, 435706 (2007).
http://dx.doi.org/10.1088/0957-4484/18/43/435706
14.
14. C. T. Bui, R. G. Xie, M. R. Zheng, Q. X. Zhang, C. H. Sow, B. W. Li, and J. T. L. Thong, Small 8, 738 (2012).
http://dx.doi.org/10.1002/smll.201102046
15.
15. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Nature 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
16.
16. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, Nature 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
17.
17. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
18.
18. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
19.
19. D. Weissenberger, M. Dürrschnabel, D. Gerthsen, F. Pérez-Willard, A. Reiser, G. M. Prinz, M. Feneberg, K. Thonke, and R. Sauer, Appl. Phys. Lett. 91, 132110 (2007).
http://dx.doi.org/10.1063/1.2791006
20.
20. L. D. Yao, D. Weissenberger, M. Dürrschnabel, D. Gerthsen, I. Tischer, M. Wiedenmann, M. Feneberg, A. Reiser, and K. Thonke, J. Appl. Phys. 105, 103521 (2009).
http://dx.doi.org/10.1063/1.3132865
21.
21. L. Shi, Ph.D. dissertation (University of California, Berkeley, 2001).
22.
22. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
23.
23. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Trans. 125, 881 (2003).
http://dx.doi.org/10.1115/1.1597619
24.
24. H. Ryssel and I. Ruge, Ion Implantation, (Wiley, New York, 1986); http/www.srim.org.
25.
25. A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, and T. Venkatesan, Solid Stat. Elec. 46, 1665 (2002);
http://dx.doi.org/10.1016/S0038-1101(02)00176-4
25.L. J. Brillson and Y. Lu, J. Appl. Phys. 109, 121301 (2011);
http://dx.doi.org/10.1063/1.3581173
25.J. H. He, J. J. Ke, P. H. Chang, K. T. Tsai, P. C. Yang, and I. M. Chan, Nanoscale 4, 3399 (2012);
http://dx.doi.org/10.1039/c2nr30688c
25.H. C. Wua, Y. C. Peng, and C. C. Chen, Optical Mat. 35, 509 (2013).
http://dx.doi.org/10.1016/j.optmat.2012.10.022
26.
26. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
http://dx.doi.org/10.1063/1.1141498
27.
27. L. Lu, W. Yi, and D. L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001).
http://dx.doi.org/10.1063/1.1378340
28.
28. X. Zhang and C. P. Grigoropoulos, Rev. Sci. Instrum. 66, 1115 (1995).
http://dx.doi.org/10.1063/1.1145989
29.
29. Q. G. Zhang, B. Y. Cao, X. Zhang, M. Fujii, and K. Takahashi, Phys. Rev. B 74, 134109 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.134109
30.
30. M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen, and S. J. Lai, Appl. Phys. Lett. 92, 063101 (2008).
http://dx.doi.org/10.1063/1.2839572
31.
31. J. Chen, G. Zhang, and B. Li, Appl. Phys. Lett. 95, 073117 (2009).
http://dx.doi.org/10.1063/1.3212737
32.
32. G. P. Srivastava, The Physics of Phonons (IOP, Philadelphia, 1990), p. 99;
32.C. M. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).
33.
33. P. G. Klemens, in Solid State Physics, edited by F. Seitz and D. Tumbull (Academic, New York, 1958), Vol. 7, p. 1.
34.
34. E. F. Steigmeier and B. Abeles, Phys. Rev. 136, A1149 (1964);
http://dx.doi.org/10.1103/PhysRev.136.A1149
34.C. B. Vining, J. Appl. Phys. 69, 331 (1991).
http://dx.doi.org/10.1063/1.347717
35.
35.For simplicity we can also take directly anharmonic decay rate including the Umklapp and normal three phonon scattering rate from experiment data [R. Cuscó, et al., Phys. Rev. B 75, 165202 (2007)] τiA = 1/(1/τiN + τiU) = 1.12, 0.62 and 0.59 ps for E2high, A1(LO) and E1(LO) modes respectively. The reason is that the contribution of anharmonic scattering to thermal conductivity can be neglected comparing with surface roughness or point defect scattering.
36.
36. R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.105501
37.
37. C. Glassbrener and A. Slack, Phys. Rev. 134, A1058 (1964).
http://dx.doi.org/10.1103/PhysRev.134.A1058
38.
38. N. Mingo, Phys. Rev. B 68, 113308 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.113308
39.
39. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.125503
40.
40. A. W. Hewat, Solid State Commun. 8, 187 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90077-3
41.
41. K. Thoma, B. Dorner, G. Duesing, and W. Wegener, Solid State Commun. 15, 1111 (1974).
http://dx.doi.org/10.1016/0038-1098(74)90543-2
42.
42. J. Serrano, F. Widulle, A. H. Romero, M. Cardona, R. Lauck, and A. Rubio, Phys. Status Solidi B 235, 260 (2003).
http://dx.doi.org/10.1002/pssb.200301566
43.
43. R. A. Robie and J. L. Edwards, J. Appl. Phys. 37, 2659 (1966).
http://dx.doi.org/10.1063/1.1782100
44.
44. F. Decremps, J. P. Porres, A. M. Saitta, J. C. Chervin, and A. Polian, Phys. Rev. B 65, 092101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.092101
45.
45. J. Serrano, A. H. Romero, F. J. Manjón, R. Lauck, M. Cardona, and A. Rubio, Phys. Rev. B 69, 094306 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.094306
46.
46. M. Ohtaki, K. Araki, and K. Yamamoto, J. Elec. Mater. 38, 1234 (2009).
http://dx.doi.org/10.1007/s11664-009-0816-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4880240
Loading
/content/aip/journal/adva/4/5/10.1063/1.4880240
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4880240
2014-05-27
2014-10-20

Abstract

The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga+) implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4880240.html;jsessionid=30o8eajl4g91k.x-aip-live-03?itemId=/content/aip/journal/adva/4/5/10.1063/1.4880240&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4880240
10.1063/1.4880240
SEARCH_EXPAND_ITEM