Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).
2. Y. Yoshizawa and K. Yamauchi, Mater. Trans. JIM, 31, 307 (1990).
3. M. Ohta and Y. Yoshizawa, Jpn, J. Appl. Phys. 46, 477 (2007).
4. M. Ohta and Y. Yoshizawa, J. Appl. Lett. 91, 062517 (2007).
5. A. Makino, T. Kubota, K. Yubuta, A. Inoue, A. Urata, K. Matsumoto, and S. Yoshida, J. Apply. Phys. 109 (07A3021) (2011).
6. A. Makino, H. Men, T. Kubota, K. Yubuta, and A. Inoue, Mater. Trans. 50, 204 (2009).
7. A. Makino, IEEE Trans. Magn. 48, 1331 (2012).
8. K. Hono, K. Hiraga, Q. Wang, A. Inoue, and T. Sakurai, Acta Metall. Mater. Mater. 40, 2137 (1992).
9. K. Hono, D. H. Ping, M. Ohnuma, and H. Onodera, Acta Mater. 47, 997 (1999).
10. S. H. Kim, M. Matsuura, M. Sakurai ,and K. Suzuki, Jpn. J. Appl. Phys. 32, Suppl. 32-2, 676 (1993).
11. J. D. Ayers, V. G. Harris, J. A. Sprague, W. T. Elam, and H. N. Jones, Acta. Mater. 46, 1861 (1998).
12. J. M. Borrego, CF. Conde, A. Conde, AV. Chadwick, and G. J. Morrison, J. Non-Cryst. Solids, 232, 352 (1998).
13. L. Cui, H. Men, A. Makino, T. Kubota, K. Yubuta, M. Qi, and A. Inoue, Mater. Trans. 50, 2515 (2009).
14. F. Kong, A. Wang, X. Fan, H. Men, B. Baolong, G. Xie, A. Makino, and A. Inoue, J. Appl. Phys. 109, 07303 (2011).
15. M. Matsuura1, Y. Zhang, M. Nishijima1, and A. Makino1, IEEE Trans. Mag. 50, 2003304 (2014).
16. M. Knobel, R. Sato Turtelli, and H. R. Rechenberg, J. Appl. Phys. 71, 6008 (1992).
17. G. Rixecker, P. Schaaf, and U. Gonser, J. Phys.: Condens. Matter. 4, 10295 (1992).
18. M. Muller, N. Mattern, and L. Illgen, J. Magn. Magn. Mater. 112, 263 (1992).
19. B. Ravel and M. Newville, J. Synch. Rad. 12, 537 (2005).
20. H. Okamoto, Phase Diagrams for Binary Alloys (Desk Handbook, 2000), vol. 1.
21. N. Saunders, A. P. Miodwonik, and A. T. Dinsdale, CHALPHA 12, 351 (1998).
22. J. M. Howe, Interfaces in Materials (Wiley-Interscience, N. Y., 1977), p. 378.
23. W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book, 8th edition (Elsevier, 2004).

Data & Media loading...


Article metrics loading...



A role of Cu on the nanocrystallization of an FeSiBP Cu alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, Δ , which causes phase transition of the Cu clusters from fcc to bcc structure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd