Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/5/10.1063/1.4880498
1.
1. H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, Appl. Phys. Lett. 89(21), 2111043 (2006).
http://dx.doi.org/10.1063/1.2392722
2.
2. C. Johnson, P. D. D. Schwindt, and M. Weisend, Appl. Phys. Lett. 97(24), 243703 (2010).
http://dx.doi.org/10.1063/1.3522648
3.
3. T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, Biomed. Opt. Express 3(5), 981990 (2012).
http://dx.doi.org/10.1364/BOE.3.000981
4.
4. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, IEEE Trans. Magn. 48(11), 37153718 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2199966
5.
5. K. Okano, A. Terao, K. Ban, S. Ichihara, N. Mizutani, and T. Kobayashi, 2012 IEEE Sensors, pp. 14, 2012.
6.
6. K. Kamada, S. Taue, and T. Kobayashi, Jpn. J. Appl. Phys. 50(5), 056602 (2011).
http://dx.doi.org/10.7567/JJAP.50.056602
7.
7. O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, and A. Ron, Phys. Rev. A 77, 043830 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.043830
8.
8. D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, Phys. Rev. A 86, 023801 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.023801
9.
9. X.-W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, Phys. Rev. A 87, 062328 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.062328
10.
10. S. Knappe and H. G. Robinson, New J. Phys. 12(6), 065021 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065021
11.
11. I. A. Sulai, R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, Opt. Lett. 38(6), 974 (2013).
http://dx.doi.org/10.1364/OL.38.000974
12.
12. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, Phys. Rev. A 77(3), 033408 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.033408
13.
13. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, Phys. Rev. Lett. 89(13), 130801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.130801
14.
14. Z. Wu, S. Schaefer, G. D. Cates, and W. Happer, Phys. Rev. A 37(4), 11611175 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.1161
15.
15. S. J. Seltzer, D. M. Rampulla, S. Rivillon-Amy, Y. J. Chabal, S. L. Bernasek, and M. V. Romalis, J. Appl. Phys. 104(10), 1031167 (2008).
http://dx.doi.org/10.1063/1.2985913
16.
16. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Canadian Metallurgical Quarterly 23(3), 309313 (1984).
http://dx.doi.org/10.1179/cmq.1984.23.3.309
17.
17. W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, Phys. Rev. A 75(1), 013416 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.013416
18.
18. W. Happer, Y.-Y. Jau, and T. Walker, John Wiley & Sons, 2010.
19.
19. S. J. Seltzer, Ph. D. Thesis, Princeton University, 2008.
20.
20. N. Lwin and D. G. McCartan, J. Phys. B 11(22), 3841 (1978).
http://dx.doi.org/10.1088/0022-3700/11/22/012
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/5/10.1063/1.4880498
Loading
/content/aip/journal/adva/4/5/10.1063/1.4880498
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/5/10.1063/1.4880498
2014-05-28
2016-09-26

Abstract

In a compact optically pumped atomic magnetometer (OPAM), there is a plateau in the sensitivity where the dependence of the sensitivity on pumping power is small compared with that predicted by the uniform polarization model. The mechanism that generates this plateau was explained by numerical analysis. The distribution of spin polarization in the alkali metal cell of an OPAM was modeled using the Bloch equation incorporating a diffusion term and an equation for the attenuation of the pump beam. The model was well-fitted to the experimental results for a module with a cubic cell with 20 mm sides and pump and probe beams with 8 mm diameter. On the plateau, strong magnetic response was generated at the regions that were not illuminated directly by the intense pump beam, while at the same time spin polarization as large as 0.5 was maintained due to diffusion of the spin-polarized atoms. Thus, the sensitivity of the magnetometer monitored with a probe beam decreases only slightly with increasing pump beam intensity because the spin polarization under an intense pump beam is saturated. This plateau, which is characteristic of this type of magnetometer using a narrow pump and probe beams, can be used in arrays of magnetometers because it enables stable operation with little sensitivity fluctuation from changes in pump beam power.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/5/1.4880498.html;jsessionid=aqCUPz2B60GO7KCrJsB3diIv.x-aip-live-06?itemId=/content/aip/journal/adva/4/5/10.1063/1.4880498&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/5/10.1063/1.4880498&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/5/10.1063/1.4880498'
Right1,Right2,Right3,