1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Ultrahigh transmission optical nanofibers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4879799
1.
1. G. Brambilla, Journal of Optics 12, 043001 (2010).
http://dx.doi.org/10.1088/2040-8978/12/4/043001
2.
2. M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, Sensors 13, 10449 (2013).
http://dx.doi.org/10.3390/s130810449
3.
3. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, Optics Communications 242, 445 (2004).
http://dx.doi.org/10.1016/j.optcom.2004.08.044
4.
4. F. Le Kien, V. I. Balykin, and K. Hakuta, Phys. Rev. A 70, 063403 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.063403
5.
5. D. Reitz, and A. Rauschenbeutel, Optics Communications 2854705 (2012).
http://dx.doi.org/10.1016/j.optcom.2012.06.034
6.
6. G. Sagué, A. Baade, and A. Rauschenbeutel, New Journal of Physics 10, 113008 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/113008
7.
7. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, Nat. Phys. 7, 159 (2011).
http://dx.doi.org/10.1038/nphys1837
8.
8. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.033603
9.
9. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, Phys. Rev. A 72, 032509 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.032509
10.
10. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.203603
11.
11. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, Opt. Lett. 37, 1949 (2012).
http://dx.doi.org/10.1364/OL.37.001949
12.
12. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
http://dx.doi.org/10.1364/OL.22.001129
13.
13. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, Opt. Express 15, 5431 (2007).
http://dx.doi.org/10.1364/OE.15.005431
14.
14. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Opt. Lett. 27, 1013 (2002).
http://dx.doi.org/10.1364/OL.27.001013
15.
15. Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.031801
16.
16. M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. N. Chormaic, Review of Scientific Instruments 80, 053102 (2009).
http://dx.doi.org/10.1063/1.3117201
17.
17. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.043902
18.
18. M. Fujiwara, T. Noda, A. Tanaka, K. Toubaru, H.-Q. Zhao, and S. Takeuchi, Opt. Express 20, 19545 (2012).
http://dx.doi.org/10.1364/OE.20.019545
19.
19. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, Opt. Express 20, 10490 (2012).
http://dx.doi.org/10.1364/OE.20.010490
20.
20. K. P. Nayak and K. Hakuta, Opt. Express 21, 2480 (2013).
http://dx.doi.org/10.1364/OE.21.002480
21.
21. M. Sadgrove, R. Yalla, K. P. Nayak, and K. Hakuta, Opt. Lett. 38, 2542 (2013).
http://dx.doi.org/10.1364/OL.38.002542
22.
22. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
http://dx.doi.org/10.1126/science.1237125
23.
23. H. J. Kimble, Nature 453, 1023 (2008).
http://dx.doi.org/10.1038/nature07127
24.
24. M. Fujiwara, K. Toubaru, and S. Takeuchi, Opt. Express 19, 8596 (2011).
http://dx.doi.org/10.1364/OE.19.008596
25.
25. S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, J. Opt. Soc. Am. A 30, 2361 (2013).
http://dx.doi.org/10.1364/JOSAA.30.002361
26.
26. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, Opt. Express 21, 18325 (2013).
http://dx.doi.org/10.1364/OE.21.018325
27.
27. M. Hafezi, Z. Kim, S. L. Rolston, L. A. Orozco, B. L. Lev, and J. M. Taylor, Phys. Rev. A 85, 020302 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.020302
28.
28. J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, Revista Mexicana De Fisica 57, 1 (2011).
29.
29. R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, Applied Physics B 105, 3 (2011).
http://dx.doi.org/10.1007/s00340-011-4730-x
30.
30. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, Opt. Express 15, 11952 (2007).
http://dx.doi.org/10.1364/OE.15.011952
31.
31. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, Lightwave Technology, Journal of 6, 1476 (1988).
http://dx.doi.org/10.1109/50.7904
32.
32. F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis, Rheinische Friedrich-Wilhelms Universitat (2007).
33.
33. T. A. Birks and Y. W. Li, Lightwave Technology, Journal of 10, 432 (1992).
http://dx.doi.org/10.1109/50.134196
34.
34. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Appl. Opt. 38, 6845 (1999).
http://dx.doi.org/10.1364/AO.38.006845
35.
35. L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, Appl. Opt. 49, 2441 (2010).
http://dx.doi.org/10.1364/AO.49.002441
36.
36. H. J. Kbashi, Journal of Materials Science & Technology 28, 308 (2012).
http://dx.doi.org/10.1016/S1005-0302(12)60059-0
37.
37. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, Appl. Opt. 37, 7289 (1998).
http://dx.doi.org/10.1364/AO.37.007289
38.
38. J. M. Ward, D. G. O'Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Review of Scientific Instruments 77, 083105 (2006).
http://dx.doi.org/10.1063/1.2239033
39.
39. H. Yokota, E. Sugai, and Y. Sasaki, Optical Review 4, A104 (1997).
http://dx.doi.org/10.1007/BF02936004
40.
40. A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel, Opt. Express 18, 22677 (2010).
http://dx.doi.org/10.1364/OE.18.022677
41.
41.Incorporated, C., Spec sheet.
42.
42. F. K. Fatemi, Opt. Express 19, 25143 (2011).
http://dx.doi.org/10.1364/OE.19.025143
43.
43. J. A. Pechkis and F. K. Fatemi, Opt. Express 20, 13409 (2012).
http://dx.doi.org/10.1364/OE.20.013409
44.
44.The programs are available at the Digital Repository of the University of Maryland DRUM at http://hdl.handle.net/1903/15069.
45.
45. G. Brambilla, V. Finazzi, and D. J. Richardson, Opt. Express 12, 2258 (2004).
http://dx.doi.org/10.1364/OPEX.12.002258
46.
46. S. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004).
http://dx.doi.org/10.1364/OPEX.12.002864
47.
47. Ltd, P. D., “FIMMWAVE/FIMMPROP,” http://www.photond.com.
48.
48. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, Opt. Express 15, 13624 (2007).
http://dx.doi.org/10.1364/OE.15.013624
49.
49. C. Wuttke and A. Rauschenbeutel, Phys. Rev. Lett. 111, 024301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.024301
50.
50. J. M. Ward, A. Maimaiti, Vu H. Le, and S. G. Nic Chormaic, ArXiv e-prints (2014), arXiv:1402.6396.
51.
51.We used acetone for the data shown in this paper; however, we do not recommend its use because it can prolong the cleaning process. SM800 fibers have a buffer made of dual acrylate, which dissolves in acetone. This is fine for chemical removal of the buffer when heated or paired with other chemicals, but when cleaning with a wipe, the acetone can spread small buffer particulate along the stripped portion of fiber, which can burn when introduced to the flame.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4879799
Loading
/content/aip/journal/adva/4/6/10.1063/1.4879799
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4879799
2014-06-17
2014-10-25

Abstract

We present a procedure for reproducibly fabricating ultrahigh transmission optical nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions of 99.95 ± 0.02%, which represents a loss from tapering of 2.6  ×  10−5 dB/mm when normalized to the entire stretch. When controllably launching the next family of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of 97.8 ± 2.8%, which has a loss from tapering of 5.0  ×  10−4 dB/mm when normalized to the entire stretch. Our pulling and transfer procedures allow us to fabricate optical nanofibers that transmit more than 400 mW in high vacuum conditions. These results, published as parameters in our previous work, present an improvement of two orders of magnitude less loss for the fundamental mode and an increase in transmission of more than 300% for higher-order modes, when following the protocols detailed in this paper. We extract from the transmission during the pull, the only reported spectrogram of a fundamental mode launch that does not include excitation to asymmetric modes; in stark contrast to a pull in which our cleaning protocol is not followed. These results depend critically on the pre-pull cleanliness and when properly following our pulling protocols are in excellent agreement with simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4879799.html;jsessionid=3rrgaas12lkdb.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4879799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrahigh transmission optical nanofibers
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4879799
10.1063/1.4879799
SEARCH_EXPAND_ITEM