Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4880495
1.
1. J. Mei, M. Bradley, and V. Bulović, Phys. Rev. B 79, 235205 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.235205
2.
2. R. R. Lunt, J. B. Benziger, and S. R. Forrest, Adv. Mater. 22, 12331236 (2010).
http://dx.doi.org/10.1002/adma.200902827
3.
3. N. Hiroshiba, R. Hayakawa, T. Chikyow, Y. Yamashita, H. Yoshikawa, K. Kobayashi, K. Morimoto, K. Matsuishi, and Y. Wakayama, Phys. Chem. Chem. Phys. 13, 62806285 (2011).
http://dx.doi.org/10.1039/c0cp02663h
4.
4. E. Lifshitz, A. Kaplan, E. Ehrenfreund, and D. Meissner, J. Phys. Chem. B 102, 967973 (1998).
http://dx.doi.org/10.1021/jp972505q
5.
5. M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, and V. M. Agranovich, Chem. Phys. 258, 7396 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00157-9
6.
6. A. Yu. Kobitski, R. Scholz, I. Vragovic, H. P. Wagner, and D. R. T. Zahn, Phys. Rev. B 66, 153204 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.153204
7.
7. K. Vasseur, R. Cedric, S. Vandezande, K. Temst, L. Froyen, and H. Paul, J. Phys. Chem. C. 114, 27302737 (2010).
http://dx.doi.org/10.1021/jp909242n
8.
8. S. Tatemichi, M. Ichikawa, S. Kato, T. Koyama, and Y. Taniguchi, Phys. Stat. Sol. (RRL) 2, 4749 (2008).
http://dx.doi.org/10.1002/pssr.200701267
9.
9. A. Yu. Kobitski, R. Scholz, D. R. T. Zahn, H. P. Wagner, Phys. Rev. B 68, 155201 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155201
10.
10. I. Vragović and R. Scholz, Phys. Rev. B 68, 155202 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155202
11.
11. I. Kim, H. M. Haverinen, Z. Wang, S. Madakuni, J. Li, and G. E. Jabbour, Appl. Phys. Lett. 95, 023305 (2009).
http://dx.doi.org/10.1063/1.3177349
12.
12. D. Chaudhuri, D. Li, Y. Che, E. Shafran, J. M. Gerton, L. Zang, and J. M. Lupton, Nano Lett. 11, 48892 (2011).
http://dx.doi.org/10.1021/nl1033039
13.
13. H. Sasaki, Y. Wakayama, T. Chikyow, E. Barrena, H. Dosch and K. Kobayashi, Appl. Phys. Lett. 88, 081907 (2006).
http://dx.doi.org/10.1063/1.2178196
14.
14. N. Hiroshiba, R. Hayakawa, M. Petit, T. Chikyow, K. Matsuishi, and Y. Wakayama, Org. Electron. 10, 10321036 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.010
15.
15. N. Hiroshiba, K. Morimoto, R. Hayakawa, T. Chikyow, Y. Wakayama, and K. Matsuishi, Chem. Phys. Lett. 512, 227230 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.07.016
16.
16. M. Ichikawa, S. Deguchi, T. Onoguchi, H. Jeon, G. R. Banoukepa, Org. Electron., 14, 464468 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.12.004
17.
17. Y. Maruyama, T. Iwaki, T. Kajiwara, I. Shirotani, H. Inokuchi, Bull. Chem. Soc. Jpn. 43, 2591261 (1970).
18.
18. R. Forker, D. Kasemann, T. Dienel, C. Wagner, R. Franke, K. Müllen, and T. Fritz, Adv. Mater. 20, 44504454, (2008).
http://dx.doi.org/10.1002/adma.200801112
19.
19. R. Forker, “Electronic Coupling Effects and Charge Transfer between Organic Molecules and Metal Surfaces,” PhD Thesis (Institut für Angewandte Photophysik Fachrichtung Physik, 2010).
20.
20. Y. Maruyama and H. Inokuchi, Bull. Chem. Soc. Jpn. 39, 14181422 (1966).
http://dx.doi.org/10.1246/bcsj.39.1418
21.
21. N. Hiroshiba, R. Hayakawa, M. Petit, T. Chikyow, K. Matsuishi, and Y. Wakayama, Org. Electron. 12, 13361340 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.001
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4880495 for PTCDI-C8, QT, and PTCDI-C8/QT absorption spectra. [Supplementary Material]
23.
23. A. Nollau, M. Hoffmann, T. Fritz, and K. Leo, Thin Solid Films 368, 130137 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00719-7
24.
24. K. Horie, H. Ushiki, F. M. Winnik, “Molecular photonics: fundamentals and practical aspects,” (Kodansha-Wiley-VCH, 2000).
25.
25. T. N. Krauss, E. Barrena, X. N. Zhang, D. G. de Oteyza, J. Major, V. Dehm, F. Würthner, L. P. Cavalcanti, and H. Dosch, Langmuir 24, 1274212744 (2008).
http://dx.doi.org/10.1021/la8030182
26.
26. T. N. Krauss, E. Barrena, D. G. de Oteyza, X. N. Zhang, V. Dehm, F. Wu, and H. Dosch, J. Phys. Chem. C. 113, 45024506 (2009).
http://dx.doi.org/10.1021/jp808037w
27.
27. L. Gisslén and R. Scholz, Phys. Rev. B 80, 115309 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115309
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4880495
Loading
/content/aip/journal/adva/4/6/10.1063/1.4880495
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4880495
2014-06-04
2016-12-07

Abstract

To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL) spectra of neat-N,N-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C) and PTCDI-C/Quaterrylene (QT) heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE), high energy charge-transfer (CTE), low energy charge-transfer (CTE), and excimer exciton states. The thermal activation energy) of CTE in PTCDI-C thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTE is more thermally sensitive than FE in PTCDI-C thin film. We investigated the exciton transport length () along the vertical direction against the substrate surface in PTCDI-C/QT thin film at 30 K, and demonstrated that = 9.9 nm, = 4.2 nm, = 4.3 nm, and = 11.9 nm. To elucidate the difference in among these excitons, the activation energies ( ) for quenching at the heteromolecular interface were investigated. values were estimated to be 13.1 meV for CTE and 18.6 meV for CTE. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C (2 ML)/QT (2 ML) system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4880495.html;jsessionid=yOUz0s88Q3V4DOxjiTkK3hT7.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4880495&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4880495&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4880495'
Right1,Right2,Right3,