Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4881376
1.
1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).
http://dx.doi.org/10.1016/S0079-6425(99)00007-9
2.
2. P. B. Prangnell, J. R. Bowen, and P. J. Apps, Mater. Sci. Eng. A. 375, 178 (2004).
http://dx.doi.org/10.1016/j.msea.2003.10.170
3.
3. Y. H. Zhao, Z. Horita, T. G. Langdon, and Y. T. Zhu, Mater. Sci. Eng. A. 474, 342 (2008).
http://dx.doi.org/10.1016/j.msea.2007.06.014
4.
4. J. Das, Mater. Sci. Eng. A. 530, 675 (2011).
http://dx.doi.org/10.1016/j.msea.2011.10.002
5.
5. Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, and E. J. Lavernia, J. Appl. Phys. 98, 034319 (2005).
http://dx.doi.org/10.1063/1.2006974
6.
6. Y. T. Zhu, X. Z. Liao, and R. Z. Valiev, Appl. Phys. Lett. 86, 103112 (2005).
http://dx.doi.org/10.1063/1.1879111
7.
7. Y. S. Li, N. R. Tao, and K. Lu, Acta Mater. 56, 230 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.09.020
8.
8. A. M. Hodge, Y. M. Wang, and T. W. Barbee, Scr. Mater. 59, 163 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2008.02.048
9.
9. G. H. Xiao, N. R. Tao, and K. Lu, Scr. Mater. 59, 975 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2008.06.060
10.
10. Y. Li, Y. H. Zhao, W. Liu, C. Xu, Z. Horita, X. Z. Liao, Y. T. Zhu, T. G. Langdon, and E. J. Laverniaa, Mater. Sci. Eng. A 527, 3942 (2010).
http://dx.doi.org/10.1016/j.msea.2010.02.076
11.
11. J. Wang, Q. Yu, Y. Jiang, and I. J. Beyerlein, JOM 66, 95 (2014).
http://dx.doi.org/10.1007/s11837-013-0803-0
12.
12. J. Tu, X. Zhang, J. Wang, Q. Sun, Q. Liu, and C. N. Tomé, Appl. Phys. Lett. 103, 051903 (2013).
http://dx.doi.org/10.1063/1.4817180
13.
13. J. Wang, S. K. Yadav, J. P. Hirth, C. N. Tomé, and I. J. Beyerlein, Mater. Res. Lett. 1, 126 (2013).
http://dx.doi.org/10.1080/21663831.2013.792019
14.
14. J. Wang, L. Liu, C. N. Tomé, S. X. Mao, and S. K. Gong, Mater. Res. Lett. 1, 81 (2013).
http://dx.doi.org/10.1080/21663831.2013.779601
15.
15. J. Wang, I. J. Beyerlein, and C. N. Tomé, Int. J. Plast. 56, 156 (2014).
http://dx.doi.org/10.1016/j.ijplas.2013.11.009
16.
16. J. Wang, I. J. Beyerlein, and J. P. Hirth, Modelling Simul. Mater. Sci. Eng. 20, 024001 (2012).
http://dx.doi.org/10.1088/0965-0393/20/2/024001
17.
17. G. E. Dieter, Mechanical Metallurgy. (Elsevier, London, 1989).
18.
18. R. Chidambaram, M. K. Sanyal, P. M. G. Nambissan, and P. Sen, J. Phys.: Condens. Matter. 2, 9941 (1990).
http://dx.doi.org/10.1088/0953-8984/2/49/018
19.
19. G. Csiszár, L. Balogh, A. Misra, X. Zhang, and T. Ungár, J. Appl. Phys. 110, 043502 (2011).
http://dx.doi.org/10.1063/1.3622333
20.
20. X. L. Wu and Y. T. Zhu, Phys. Rev. Lett. 101, 025503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.025503
21.
21. X. Z. Liao, F. Zhou, E. J. Lavernia, S. G. Srinivasan, M. I. Baskes, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 632 (2003).
http://dx.doi.org/10.1063/1.1594836
22.
22. H. V. Swygenhoven, and P. A. Derlet, Phys. Rev. B. 64, 224105 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.224105
23.
23. S. Cheng, Y. H. Zhao, Y. Z. Guo, Y. Li, Q. M. Wei, X. L. Wang, Y. Ren, P. K. Liaw, H. Choo, and E. J. Lavernia, Adv. Mater. 21, 5001 (2009).
http://dx.doi.org/10.1002/adma.200901991
24.
24. L. Li, T. Ungar, Y. D. Wang, G. J. Fan, Y. L. Yang, N. Jia, Y. Ren, G. Tichy, J. Lendvai, H. Choo, and P. K. Liaw, Scr. Mater. 60, 317 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2008.10.031
25.
25. M. Dao, L. Lu, Y. F. Shen, and S. Suresh, Acta Mater. 54, 5421 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.06.062
26.
26. D. Hull and D. J. Bacon, Introduction to Dislocations. (Pergamon Press, Oxford, 1984).
27.
27. J. M. F. Vergnol and J. R. Grilhe, J. Physique. 45, 1479 (1984).
http://dx.doi.org/10.1051/jphys:019840045090147900
28.
28. M. A. Meyers, O. Vohringer, and V. A. Lubarda, Acta Mater. 49, 4025 (2001).
http://dx.doi.org/10.1016/S1359-6454(01)00300-7
29.
29. H. Zhao, Y. T. Zhu, X. Z. Liao, Z. Horita, and T. G. Langdon, Appl. Phys. Lett. 89, 121906 (2006).
http://dx.doi.org/10.1063/1.2356310
30.
30. X. H. Chen, L. Lu, and K. Lu, J. Appl. Phys. 102, 083708 (2007).
http://dx.doi.org/10.1063/1.2799087
31.
31. J. Arunkumar, S. Abhaya, R. Rajaraman, G. Amarendra, K. G. M. Nair, C. S. Sundar, and B. Raj, J. Nucl. Mater. 384, 245 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2008.11.014
32.
32. T. Fengen, L. Baozhang, and L. Yanqin, Chinese Phys. Lett. 7, 312 (1990).
http://dx.doi.org/10.1088/0256-307X/7/7/007
33.
33. D. Sanyal, D. Banerjee, and U. De, Phys. Rev. B. 58, 226 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15226
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4881376
Loading
/content/aip/journal/adva/4/6/10.1063/1.4881376
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4881376
2014-06-02
2016-12-04

Abstract

The effect of cryorolling (CR) strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn) during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density () increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs) and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4881376.html;jsessionid=DHBb0_enD32_UKVRXz01FNZz.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4881376&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4881376&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4881376'
Right1,Right2,Right3,