Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).
2. P. B. Prangnell, J. R. Bowen, and P. J. Apps, Mater. Sci. Eng. A. 375, 178 (2004).
3. Y. H. Zhao, Z. Horita, T. G. Langdon, and Y. T. Zhu, Mater. Sci. Eng. A. 474, 342 (2008).
4. J. Das, Mater. Sci. Eng. A. 530, 675 (2011).
5. Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, and E. J. Lavernia, J. Appl. Phys. 98, 034319 (2005).
6. Y. T. Zhu, X. Z. Liao, and R. Z. Valiev, Appl. Phys. Lett. 86, 103112 (2005).
7. Y. S. Li, N. R. Tao, and K. Lu, Acta Mater. 56, 230 (2008).
8. A. M. Hodge, Y. M. Wang, and T. W. Barbee, Scr. Mater. 59, 163 (2008).
9. G. H. Xiao, N. R. Tao, and K. Lu, Scr. Mater. 59, 975 (2008).
10. Y. Li, Y. H. Zhao, W. Liu, C. Xu, Z. Horita, X. Z. Liao, Y. T. Zhu, T. G. Langdon, and E. J. Laverniaa, Mater. Sci. Eng. A 527, 3942 (2010).
11. J. Wang, Q. Yu, Y. Jiang, and I. J. Beyerlein, JOM 66, 95 (2014).
12. J. Tu, X. Zhang, J. Wang, Q. Sun, Q. Liu, and C. N. Tomé, Appl. Phys. Lett. 103, 051903 (2013).
13. J. Wang, S. K. Yadav, J. P. Hirth, C. N. Tomé, and I. J. Beyerlein, Mater. Res. Lett. 1, 126 (2013).
14. J. Wang, L. Liu, C. N. Tomé, S. X. Mao, and S. K. Gong, Mater. Res. Lett. 1, 81 (2013).
15. J. Wang, I. J. Beyerlein, and C. N. Tomé, Int. J. Plast. 56, 156 (2014).
16. J. Wang, I. J. Beyerlein, and J. P. Hirth, Modelling Simul. Mater. Sci. Eng. 20, 024001 (2012).
17. G. E. Dieter, Mechanical Metallurgy. (Elsevier, London, 1989).
18. R. Chidambaram, M. K. Sanyal, P. M. G. Nambissan, and P. Sen, J. Phys.: Condens. Matter. 2, 9941 (1990).
19. G. Csiszár, L. Balogh, A. Misra, X. Zhang, and T. Ungár, J. Appl. Phys. 110, 043502 (2011).
20. X. L. Wu and Y. T. Zhu, Phys. Rev. Lett. 101, 025503 (2008).
21. X. Z. Liao, F. Zhou, E. J. Lavernia, S. G. Srinivasan, M. I. Baskes, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 632 (2003).
22. H. V. Swygenhoven, and P. A. Derlet, Phys. Rev. B. 64, 224105 (2001).
23. S. Cheng, Y. H. Zhao, Y. Z. Guo, Y. Li, Q. M. Wei, X. L. Wang, Y. Ren, P. K. Liaw, H. Choo, and E. J. Lavernia, Adv. Mater. 21, 5001 (2009).
24. L. Li, T. Ungar, Y. D. Wang, G. J. Fan, Y. L. Yang, N. Jia, Y. Ren, G. Tichy, J. Lendvai, H. Choo, and P. K. Liaw, Scr. Mater. 60, 317 (2009).
25. M. Dao, L. Lu, Y. F. Shen, and S. Suresh, Acta Mater. 54, 5421 (2006).
26. D. Hull and D. J. Bacon, Introduction to Dislocations. (Pergamon Press, Oxford, 1984).
27. J. M. F. Vergnol and J. R. Grilhe, J. Physique. 45, 1479 (1984).
28. M. A. Meyers, O. Vohringer, and V. A. Lubarda, Acta Mater. 49, 4025 (2001).
29. H. Zhao, Y. T. Zhu, X. Z. Liao, Z. Horita, and T. G. Langdon, Appl. Phys. Lett. 89, 121906 (2006).
30. X. H. Chen, L. Lu, and K. Lu, J. Appl. Phys. 102, 083708 (2007).
31. J. Arunkumar, S. Abhaya, R. Rajaraman, G. Amarendra, K. G. M. Nair, C. S. Sundar, and B. Raj, J. Nucl. Mater. 384, 245 (2009).
32. T. Fengen, L. Baozhang, and L. Yanqin, Chinese Phys. Lett. 7, 312 (1990).
33. D. Sanyal, D. Banerjee, and U. De, Phys. Rev. B. 58, 226 (1998).

Data & Media loading...


Article metrics loading...



The effect of cryorolling (CR) strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn) during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density () increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs) and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd