Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4881416
1.
1. G. Wilemski and M. Fixman, J. Chem. Phys. 60, 866 (1974).
http://dx.doi.org/10.1063/1.1681162
2.
2. M. Doi, Chem. Phys. 9, 455 (1975).
http://dx.doi.org/10.1016/0301-0104(75)80083-8
3.
3. A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys. 72, 4350 (1980).
http://dx.doi.org/10.1063/1.439715
4.
4. B. Friedman and B. O’Shaughnessy, Phys. Rev. A 40, 5950 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.5950
5.
5. R. W. Pastor, R. Zwanzig, and A. Szabo, J. Chem. Phys. 105, 3878 (1996).
http://dx.doi.org/10.1063/1.472208
6.
6. G. Srinivas, A. Yethiraj, and B. Bagchi, J. Chem. Phys. 114, 9170 (2001).
http://dx.doi.org/10.1063/1.1369130
7.
7. J. J. Portman, S. Takada, and P. G. Wolynes, J. Chem. Phys. 114, 5082 (2001).
http://dx.doi.org/10.1063/1.1334663
8.
8. D. Thirumalai, N. Lee, S. A. Woodson, and D. Klimov, Annu. Rev. Phys. Chem. 52, 751 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.751
9.
9. T. Bandyopadhyay and S. K. Ghosh, J. Chem. Phys. 116, 4366 (2002).
http://dx.doi.org/10.1063/1.1436475
10.
10. A. Dua and B. J. Cherayil, J. Chem. Phys. 116, 399 (2002).
http://dx.doi.org/10.1063/1.1423937
11.
11. A. Dua and B. J. Cherayil, J. Chem. Phys. 117, 7765 (2002).
http://dx.doi.org/10.1063/1.1509448
12.
12. G. Srinivas, B. Bagchi, and K. L. Sebastian, J. Chem. Phys. 116, 7276 (2002).
http://dx.doi.org/10.1063/1.1466832
13.
13. J. Sung, J. Lee, and S. Lee, J. Chem. Phys. 118, 414 (2003).
http://dx.doi.org/10.1063/1.1525801
14.
14. J. J. Portman, J. Chem. Phys. 118, 2381 (2003).
http://dx.doi.org/10.1063/1.1532728
15.
15. I. M. Sokolov, Phys. Rev. Lett. 90, 080601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.080601
16.
16. T. Bandyopadhyay and S. K. Ghosh, J. Chem. Phys. 119, 572 (2003).
http://dx.doi.org/10.1063/1.1578060
17.
17. Y.-J. Sheng, P.-H. Hsu, J. Z. Y. Chen, and H.-K. Tsao, Macromolecules 37, 9257 (2004).
http://dx.doi.org/10.1021/ma049388z
18.
18. D. Thirumalai and C. Hyeon, Biochemistry 44, 4957 (2005).
http://dx.doi.org/10.1021/bi047314+
19.
19. C. Hyeon and D. Thirumalai, J. Chem. Phys 124, 104905 (2006).
http://dx.doi.org/10.1063/1.2178805
20.
20. D. Doucet, A. Roitberg, and S. J. Hagen, BioPhys. J 92, 2281 (2007).
http://dx.doi.org/10.1529/biophysj.106.092379
21.
21. N. M. Toan, G. Morrison, C. Hyeon, and D. Thirumalai, J. Phys. Chem. B 112, 6094 (2008).
http://dx.doi.org/10.1021/jp076510y
22.
22. J.-H. Kim, W. Lee, J. Sung, and S. Lee, J. Phys. Chem. B 112, 6250 (2008).
http://dx.doi.org/10.1021/jp076426i
23.
23. K. P. Santo and K. L. Sebastian, Phys. Rev. E. 80, 061801 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.061801
24.
24. T. Guérin, O. Bénchou, and R. Voituriez, Nature Chem. 4, 568 (2012).
http://dx.doi.org/10.1038/nchem.1378
25.
25. R. Chakrabarti, Physica A 391, 4081 (2012).
http://dx.doi.org/10.1016/j.physa.2012.03.025
26.
26. R. Chakrabarti, Physica A 391, 5326 (2012).
http://dx.doi.org/10.1016/j.physa.2012.06.025
27.
27. P. Bhattacharyya, R. Sharma, and B. J. Cherayil, J. Chem. Phys. 136, 234903 (2012).
http://dx.doi.org/10.1063/1.4729041
28.
28. T. Guérin, O. Bénchou, and R. Voituriez, J. Chem. Phys. 138, 094908 (2013).
http://dx.doi.org/10.1063/1.4792437
29.
29. T. Guérin, O. Bénchou, and R. Voituriez, Phys. Rev. E 87, 032601 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.032601
30.
30. L. J. Lapidus, W. A. Eaton, and J. Hofrichter, Proc. Natl. Acad. Sci. 97, 7220 (2000).
http://dx.doi.org/10.1073/pnas.97.13.7220
31.
31. F. Krieger, B. Fierz, O. Bieri, M. Drewello, and T. Kiefhaber, J. Mol. Biol. 332, 265 (2003).
http://dx.doi.org/10.1016/S0022-2836(03)00892-1
32.
32. A. Möglich, F. Krieger, and T. Kiefhaber, J. Mol. Biol. 345, 153 (2005).
http://dx.doi.org/10.1016/j.jmb.2004.10.036
33.
33. A. Möglich, K. Jorder, and T. Kiefhaber, Proc. Natl. Acad. Sci. 103, 12394 (2006).
http://dx.doi.org/10.1073/pnas.0604748103
34.
34. B. Fierz and T. Kiefhaber, J. Am. Chem. Soc. 129, 672 (2007).
http://dx.doi.org/10.1021/ja0666396
35.
35. D. Nettels, A. Hoffmann, and B. Schuler, J. Phys. Chem. B 112, 6137 (2008).
http://dx.doi.org/10.1021/jp076971j
36.
36. B. Ahmad, Y. Chen, and L. J. Lapidus, Proc. Natl. Acad. Sci. 109, 2336 (2012).
http://dx.doi.org/10.1073/pnas.1109526109
37.
37. D. E. Makarov, J. Chem. Phys. 132, 035104 (2010).
http://dx.doi.org/10.1063/1.3284509
38.
38. H. S. Chung and W. A. Eaton, Nature 502, 685 (2013).
http://dx.doi.org/10.1038/nature12649
39.
39. B. Schuler and J. Clarke, Nature 502, 632 (2013).
http://dx.doi.org/10.1038/nature12697
40.
40. T. Cellmer, E. R. Henry, J. Hofrichter, and W. A. Eaton, Proc. Natl. Acad. Sci. 105, 18320 (2008).
http://dx.doi.org/10.1073/pnas.0806154105
41.
41. J. C. F. Schulz, L. Schmidt, R. B. Best, J. Dzubiella, and R. R. Netz, J. Am. Chem. Soc. 134, 6273 (2012).
http://dx.doi.org/10.1021/ja211494h
42.
42. A. Soranno, B. Buchli, D. Nettels, R. R. Cheng, S. Müller-Späth, S. H. Pfeil, A. Hoffmann, E. A. Lipman, D. E. Makarov, and B. Schuler, Proc. Natl. Acad. Sci. 109, 17800 (2012).
http://dx.doi.org/10.1073/pnas.1117368109
43.
43. B. G. W. Alessandro Borgia, A. Soranno, D. Nettels, M. B. Borgia, A. Hoffmann, S. H. Pfeil, E. A. Lipman, J. Clarke, and B. Schuler, Nature Communications 3, 1195 (2012).
http://dx.doi.org/10.1038/ncomms2204
44.
44. U. M. Yasin, P. Sashi, and A. K. Bhuyan, J. Phys. Chem. B 117, 12059 (2013).
http://dx.doi.org/10.1021/jp408718c
45.
45. D. E. Sagnella, J. E. Straub, and D. Thirumalai, J. Chem. Phys. 113, 7702 (2000).
http://dx.doi.org/10.1063/1.1313554
46.
46. T. R. Einert, C. E. Sing, A. Alexander-Katz, and R. R. Netz, Euro. Phys. J. E 34, 1 (2011).
http://dx.doi.org/10.1140/epje/i2011-11001-4
47.
47. R. R. Cheng, A. T. Hawk, and D. E. Makarov, J. Chem. Phys. 138, 074112 (2013).
http://dx.doi.org/10.1063/1.4792206
48.
48. N. Samanta and R. Chakrabarti, Chem. Phys. Letts. 582, 71 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.07.039
49.
49. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1988).
50.
50. T. Kawakatsu, Statistical Physics of Polymers An Introduction (Springer, 2004).
51.
51. B. S. Khatri and T. C. B. McLeish, Macromolecules 40, 6770 (2007).
http://dx.doi.org/10.1021/ma071175x
52.
52. R. Adhikari and A. Dua, J. Stat. Mech. Theo. Expts. P04017, 1 (2011).
http://dx.doi.org/10.1088/1742-5468/2011/04/P04017
53.
53. A. Debnath, R. Chakrabarti, and K. L. Sebastian, J. Chem. Phys. 124, 204111 (2006).
http://dx.doi.org/10.1063/1.2200695
54.
54. K. L. Sebastian, Phys. Rev. A. 46, R1732 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.R1732
55.
55. R. Chakrabarti, Chem. Phys. Lett. 495, 60 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.06.076
56.
56. T. Orexi, E. B. Ishay, M. Pirchi, M. H. Jacob, D. Amir, and E. Haas, J. Mol. Biol. 385, 1230 (2009).
http://dx.doi.org/10.1016/j.jmb.2008.10.077
57.
57. S. A. Waldaver, O. Bakajin, and L. J. Lapidus, Proc. Natl. Acad. Sci. 107, 13713 (2010).
http://dx.doi.org/10.1073/pnas.1005415107
58.
58. K. L. Sebastian and A. K. R. Paul, Phys. Rev. E. 62, 927 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.927
59.
59. A. Rauscher, I. Derényi, L. Gráf, and A. Málnási-Csizmandia, IUBMB Life 65, 35 (2013).
http://dx.doi.org/10.1002/iub.1101
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4881416
Loading
/content/aip/journal/adva/4/6/10.1063/1.4881416
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4881416
2014-06-02
2016-12-09

Abstract

In recent past, experiments and simulations have suggested that apart from the solvent friction, friction arising from the protein itself plays an important role in protein folding by affecting the intra-chain loop formation dynamics. This friction is termed as internal friction in the literature. Using a flexible Gaussian chain with internal friction we analyze the intra-chain reconfiguration and loop formation times for all three topology classes namely end-to-end, end-to-interior and interior-to-interior. In a nutshell, bypassing expensive simulations we show how simple models like that of Rouse and Zimm can support the single molecule experiment and computer simulation results on intra-chain diffusion coefficients, looping time and even can predict the effects of tail length on the looping time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4881416.html;jsessionid=-6__gcJnMMXAh6mSHm59EoXx.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4881416&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4881416&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4881416'
Right1,Right2,Right3,