Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4881677
1.
1. R. K. Deka, “Hall Effect on MHD Flow Passed an Accelerated Plate,” Theoretical & Applied Mechanics 35(4), 333346 (2008).
http://dx.doi.org/10.2298/TAM0804333D
2.
2. O. I. Vinogradova, “Slippage of Water over Hydrophobias Surfaces,” Int. J. Miner. Process. 56, 3160 (1999).
http://dx.doi.org/10.1016/S0301-7516(98)00041-6
3.
3. B. T. Atwood and W. R. Schowalter, “Measurement of Slip at the Wall during Flow of high-density Polyethylene through a Rectangular Conduct,” Rheol. Acta 28(2), 134146 (1989).
http://dx.doi.org/10.1007/BF01356974
4.
4. R. G. Horn, O. I. Vinogradova, M. E. Mackay, and N. Phan-Thien, “Hydrodynamic Slippage inferred from thin-film Drainage Measurements in a Solution of Nonadsorbing Polymer.,” J. Chem. Phys. 112(14), 64246434 (2000).
http://dx.doi.org/10.1063/1.481274
5.
5. K. B. Migler, H. Hervet, and L. Léger, “Slip Transition of a Polymer Melt under Shear Stress,” Phys. Rev. Lett. 70, 287 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.287
6.
6. M. M. Denn, “Issues in Viscoelastic Fluid Mechanics,” Annu Rev. Fluid Mech. 22, 1332 (1990).
http://dx.doi.org/10.1146/annurev.fl.22.010190.000305
7.
7. J. C. Maxwell and Philos, “On Stresses in Rarified Gases Arising from Inequalities of Temperature,” Trans. R. Soc. London Ser A 170, 231 (1879).
8.
8. E. T. Watts, J. Krim, and A. Widom, “Experimental Observation of Interfacial Slippage at the Boundary of Molecularly Thin Films with Gold Substrares,” Phys. Rev. B 41, 34663472 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.3466
9.
9. S. E. Campbell, G. Luengo, V. I. Srdanov, F. Wudi, and J. N. Israelachvili, “Very Low Viscosity at solid-liquid Interface Induced by C60 Monolayer,” Nature 382, 520522 (1996).
http://dx.doi.org/10.1038/382520a0
10.
10. R. Pit, H. Hervet, and L. Léger, “Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces,” Phys. Rev. Lett. 85(5), 980983 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.980
11.
11. P. A. Thompson and S. M. Troian, “A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature 389, 360362 (1997).
http://dx.doi.org/10.1038/39475
12.
12. S. A. Gupta, H. D. Cochran, and P. T. Cummings, “Shear Behavior of Squalane and Tetracosane Under Extreme Confinement, I. Model, Simulation Method and Interfacial Slip,” J. Chem. Phys. 107(23), 1031610327 (1997).
http://dx.doi.org/10.1063/1.474171
13.
13. J.-L. Barrat and L. Bocquet, “Moisture Induced Ageing in Granular Media and the Kinetics of Capillary Condensation,” Phys. Rev. Lett. 82, 46714674 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4671
14.
14. M. Cieplak, J. Koplik, and J. Banavar, “Boundary Conditions at a soli-liquid Interface,” Phys. Rev. Lett. 86, 803806 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.803
15.
15. V. S. J. Craig, C. Neto, and D. R. M. Williams, “Shear Dependent Boundary Slip in an Aqueous Newtonian Liquid,” Phys. Rev. Lett 87, 054504:1–4 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.054504
16.
16. O. I. Vinogradova and G. E. Yakubov, “Dynamic Effects on Force Measurement. 2. Lubrication and the Atomic Force Microscope,” Langmuir 19(4), 12271234 (2003).
http://dx.doi.org/10.1021/la026419f
17.
17. L. Léger, “Friction Mechanisms and Interfacial Slip at Fluid-Sloid Interfaces,” J. Phys. Cond. Matt. 15(1), 1929 (2003).
http://dx.doi.org/10.1088/0953-8984/15/1/303
18.
18. F. Brochard Wyart and P. G. de Gennes, “Shear Dependent Slippage at a Polymer/Solid Interface,” Langmuir 8, 30333037 (1992).
http://dx.doi.org/10.1021/la00048a030
19.
19. Y. Zhu and S. Granick, “Rate Dependent Slip of Newtonian Liquid at Smooth Surfaces,” Phys. Rev. Lett. 87(9), 96105:1–4 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.096105
20.
20. E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects,” Phys. Rev. Lett. 88(7), 7610376106 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.076103
21.
21. J. Baudry, E. Charlaix, A. Tonck, and D. Mazuyer, “Experimental Evidence of Large Slip Effect at a non-wetting fluid-solid Interface,” Langmuir 17, 52325236 (2001).
http://dx.doi.org/10.1021/la0009994
22.
22. Y. Zhu and S. Granick, “Limits of Hydrodynamic no-slip Liquid Flow Boundary Condition,” Phys. Rev. Lett. 88, 106102:1–4 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.106102
23.
23. Y. Zhu and S. Granick, “Apparent Slip of Newtonian Fluids Past Absorbed Polymer Layers,” Macromolecules 35, 46584663 (2002).
24.
24. C. Cottin-Bizonne, S. Jurine, J. Baudry, J. Crassous, F. Restagno, and E. Charlaix, “An Investigation of Boundary Condition at Hydrophobic and Hydropholic Interfaces,” Eur. Phys. J. E 9, 47 (2002).
25.
25. A. Farhad, M. Norzieha, S. Sharidan, and I. Khan, “On Accelerated MHD flow in a Porous Medium with Slip Condition,” European Journal of Scientific Research 57(2), 293304 (2011).
26.
26. Y. Zhu and S. Granick, “The no-slip Boundary Condition Switches to Partial Slip when Fluid Contains Surfactants,” Langmuir 18, 1005810063 (2002).
http://dx.doi.org/10.1021/la026016f
27.
27. J. T. Cheng and N. Giordano, “Fluid Flows through Nanometer-scale Channels,” Phys. Rev. E 65, 031206 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.031206
28.
28. D. C. Tretheway and C. D. Meinhart, “Apparent Fluid Slip at Hydrophobic Microchannel wall,” Phys. Fluids 14(3), L9L12 (2002).
http://dx.doi.org/10.1063/1.1432696
29.
29. E. Bonaccurso, H. J. Butt, and V. S. J. Craig, “Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System,” Phys. Rev. Lett. 90(14), 144501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.144501
30.
30. T. Hayat, Masood khan, M. Ayub, and Z. angew, “On Nonlinear Flows with Slip Boundary Conditions,” Math. Phys. 56, 10121029 (2005).
31.
31. A. M. Arshad, “Effects of Radiation and Variable Viscosity on Unsteady MHD-Flow of a Rotating Fluid from Stretching surface in Porous Medium,” Journal of Egyptian Mathematical Society, (in press, 2013).
32.
32. S. Faisal, A. Z. Zainal, and L. C. C. Dennis, “One Accelerated MHD Flows of Second Grade Fluid in a Porous Medium and Rotatinng Frame,” IAENG International Journal of Applied Mathematics 43(3), IJAM43303 (2013)
33.
33. M. Khan, S. H. Ali, and H. T. Qi, “On accelerated Flows of a Viscoelastic Fluid with the Fractional Burger's Model,” Nonlinear Analysis: Real World Applications 10(4), 228602296 (2009).
34.
34. H. S. Takhar, A. J. Chamkha, and G. Nath, “Flow and Heat Transfer on a Stretching Surface in a Rotating Fluid with a Magnetic Field,” International Journal of Thermal Sciences 42, 2331 (2003).
http://dx.doi.org/10.1016/S1290-0729(02)00004-2
35.
35. S. Das, S. L. Maji, N. Ghara, and R. N. Jana, “Combined effects of Hall currents and slip condition on steady flow of a viscous fluid due to non-coaxial rotation of a porous disk and a fluid at infinity,” Journal of Mechanical Engineering Research 4(5), 175184 (2012).
36.
36. Islam M. Eldesoky, “Slip Effects on the Unsteady MHD Pulsatile Blood Flow through Porous Medium in an Artery under the Effect of Body Acceleration,” International Journal of Mathematics and Mathematical Sciences 860239, 26 (2012).
37.
37. L. J. Rhooades, R. Resnic, T. O’ Bradovich, and S. Stegman, “Abrasive Flow Machining of Cylinder Heads and its Positive Effects on Performance and Cost Characteristics,” The Motorsports Engineering Conference and Exposition (Dearborn, Michigan, 1996).
38.
38. J. Donea and A. Huerta, Finite element methods for flow problems (John Wiley and Sons, New York, 2003).
39.
39. T. R. Hughes, The Finite Element Method (Linear Static and Dynamic Finite Element Analysis). (Dover Publication, New York, 2000).
40.
40. N. B. Salah, A. Soulaimani, and W. G. Habashi, “A finite element method for magnetohydrodynamics,” Computer Methods in Applied Mechanics and Engineering 190(43–44) 58675892, (2001).
http://dx.doi.org/10.1016/S0045-7825(01)00196-7
41.
41. J. Anand, R. Srinivasa, and S. Sivaiah, “Finite Element Solution of MHD Transient Flow past an Impulsively Started Infinite Horizontal Porous Plate in a Rotating Fluid with Hall Current,” Journal of Applied Fluid Mechanics 5(3), 105112, (2012).
42.
42. L. Kumar, B. Singh, L. Kumar, and R. Bhargava, “Finite Element Solution Of MHD Flow Of Micropolar Fluid Towards a Stagnation Point On A Vertical Stretching Sheet” 7(3), 1430, (2011).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4881677
Loading
/content/aip/journal/adva/4/6/10.1063/1.4881677
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4881677
2014-06-03
2016-09-29

Abstract

Magneto-Hydrodynamic (MHD) flow over an accelerated plate is investigated with partial slip conditions. Generalized Fourier Transform is used to get the exact solution not only for uniform acceleration but also for variable acceleration. The numerical solution is obtained by using linear finite element method in space and One-Step-θ-scheme in time. The resulting discretized algebraic systems are solved by applying geometric-multigrid approach. Numerical solutions are compared with the obtained Fourier transform results. Many interesting results related with slippage and MHD effects are discussed in detail through graphical sketches and tables. Application of Dirac-Delta function is one of the main features of present work.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4881677.html;jsessionid=GWZbFt597MKuimEpwob5Ijex.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4881677&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4881677&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4881677'
Right1,Right2,Right3,