Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. K. Raturi, R. Thangaraj, A. K. Sharma, and O. P. Agnihotri, “Sprayed CdS1−xSex thin films,” J. Phys. C 15, 49334937 (1982).
2. R. Hill and A. N. Casperd, “Refractive indices of cadmium sulphide-telluride alloys,” Solid State Commun. 17, 735737735740 (1975).
3. R. Hill, “The preparation and optical properties of thin films of semiconductor alloys,” Thin Solid Films 34, 395398 (1976).
4. F. Li, X. T. Huang, T. Kong, X. Q. Liu, Q. H. Qin, and Z. LiSynthesis and characterization of PbS crystals via a solvothermal route,” Journal of Alloys and Compounds 485, 554560 (2009).
5. D. E. Aspnes and M. Cardona, “Electro-optic measurements of PbS, PbSe and PbTe,” Phys. Rev. 173, 714728 (1968).
6. H. Q. Cao, G. Z. Wang, S. C. Zhang, and X. R. Zhang, “Growth and photoluminescence of PbS nanocubes,” Nanotechnology 17, 32803287 (2006).
7. J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B 48, 28192822 (1993).
8. H. T. Au. Giang, Y. S. Wan, S. J. Tseng, and W. H. Shih, “Aqueous CdPbS quantum dots for near-infrared imaging,” Nanotechnology, 23, 275601275610 (2012).
9. P. K. Swain and H. K. Sehgal, “Characterization of Pb1-xMnxS thin films prepared by flash evaporation technique,” Thin Solid Films 287, 110114 (1996).
10. J. P. Donnelly, T. C. Herman, A. G. Foyet, and W. T. Lindley, “PbS photodiodes fabricated by Sb+ ion implantation,” Solid-State Electron. 16, 529534 (1973).
11. A. Ishida, N. Sakurai, K. Aikawa, and H. Fujiyasu, “PbSrS MQW lasers and the effect of quantum well on operation temperature,” Solid-State Electron. 37, 11411144 (1994).
12. M. Jain, H. K. Sehgal, and A. V. R. Warrier, “Structure of flash-evaporated Pb1−xHgxS alloy films,” Thin Solid Films 111, 249258 (1984).
13. E. Rabinovich, E. Wachtel, and G. Hodes, “Chemical bath deposition of single-phase (Pb, Cd)S solid solutions,” Thin Solid Film 517, 737744 (2008).
14. R. K. Joshi, P. Kumar, H. K. Sehgal, and A. Kanjilal, “Study of solution grown variable bandgap Pb1-xMnxS semiconductor nanoparticle films,” Journal of The Electrochemical Society, 153, C707C712 (2006).
15. P. M. Bethke and P. B. Barton, Jr., “Sub-solidus relation in the system PbS-CdS,” Am. Mineralog 56, 2034 (1971).
16. A. R. Calawa, J. A. Mroczkowski, and T. C. Harman, “Preparation and properties of Pb1−xCdxS,” J. Electron. Mater. 1, 191200 (1972).
17. B. B. Nayak, H. N. Acharya, and G. B. Mitra, “Preparation and structural characterization of chemically deposited Pb1−xCdxS films,” Bull. Mater. Sci. 3, 317323 (1971).
18. E. Pentia, V. Draghici, G. Sarau, B. Mereu, L. Pintilie, F. Sava, and M. Popescu, “Structural, electrical and photoelectrical properties of CdxPb1−xS thin films prepared by chemical bath deposition,” Journal of The Electrochemical Society 151, G729G733 (2004).
19. P. Baláža, P. Pourghahramanib, M. Achimovičováa, E. Dutkováa, J. Kováčc, A. Šatkac, and J. Z. Jiang, “Mechanochemical synthesis and reactivity of PbS nanocrystalsCryst. Growth 332, 16 (2011).
20. G. L. Tan, J. H. Du, Q. J. Zhang, “Structural evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying,” J. Alloys Compd. 468, 421431 (2009).
21. G. L. Tan, N. Wu, J. G. Zheng, U. Hommerich, and D. Temple, “Optical absorption and valence band photoemission from uncapped CdTe nanocrystals,” J. Phys. Chem. B 110, 21252130 (2006).
22. G. L. Tan, L. Zhang, and X. F. Yu, “Preparation and optical properties of CdS nanocrystals prepared by a mechanical alloying process,” J. Phys. Chem. C 114, 290293 (2010).
23. S. Patra, B. Satpati, and S. K. Pradhan, “Microstructure characterization of mechanically synthesized ZnS quantum dots,” J. Appl. Phys. 106, 034313034321 (2009).
24. G. L. Tan, S. H. Li, J. B. Murowchick, C. Wisner, N. Leventis, and Z. H. Peng, “Preparation of uncapped CdSe1−xSx semiconducting nanocrystals by mechanical alloying,” J. Appl. Phys. 110, 124306 (2011).
25. G. L. Tan, X. J. Wu, M. H. Zhao, and H. F. Zhang, “Synthesis of nanocrystalline cubic substoichiometric WC1−z powders by mechanochemical technology,” J. Mater. Sci. 35, 31513154 (2000).
26. P. N. Ivanov, V. F. Markov, and L. N. Maskaeva, “Role of the size effect in hydrochemical deposition of PbS-CdS solid-solution films,” Inorg. Mater. 41, 11351138 (2005).
27. G. L. Tan and X. F. Yu, “Capping the ball-milled CdSe nanocrysals for light excitation,” J. Phys. Chem. C 113, 87248729 (2009).
28. S. H. Li, G. L. Tan, J. B. Murowchick, C. Wisner, N. Leventis, T. Xia, X. B. Chen, and Z. H. Peng, “Preparation of Uncapped CdSex Te1−xNanocrystals with Strong Near-IR Tunable Absorption,” J. Electron. Mater. 42, 33733378 (2013).
29. L. Vegard, “Die konstitution der mischkristalle und die raumfüllung der atome,” Z. Phys. 5, 1726 (1921).

Data & Media loading...


Article metrics loading...



Composition-tunable ternary Cd Pb S nanocrystals (NCs) are very important materials for remote sensing and detecting in the infrared (IR) wavelength region. They are, however, almost exclusively prepared by wet chemical routes which lead to surface-capped nanoparticles. The surface capping molecules could move their absorption peaks from mid-IR to near IR wavelength region. However, surface clean Cd Pb S nanocrystals (NCs) would demonstrate intrinsic optical spectrum in the mid-IR region. Herein, we present a physical mechanical alloying (MA) process being applied to prepare tens of grams of surface clean Cd Pb S nanocrystals within the composition range of x = 0.0 to 0.4. The average particle size is smaller than 9 nm. The as-milled nanocrystals are chemically homogenous. The Cd Pb S nanocrystals show a continuous lattice contraction with Cd content. There is an exponential indirect band gap-composition relationship. This MA method shows the ability to continuously and precisely tune the band gap energies of ternary Cd Pb S semiconductor nanocrystals from mid-IR region (2638 nm) to NIR wavelength region (1240 nm) through chemical composition.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd