Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Sherwin, Nature 420, 131 (2002);
1.D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, Proc. IEEE 93, 1722 (2005);
1.M. Tonouchi, Nature photonic 1, 97 (2007).
2. P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
3. A. Íñiguez-de-la-Torre, I. Íñiguez-de-la-Torre, J. Mateos, T. González, P. Sangaré, M. Faucher, B. Grimbert, V. Brandli, G. Ducournau, and C. Gaquière, J. Appl. Phys. 111, 113705 (2012).
4. A. Khalid, N. J. Pilgrim, G. M. Dunn, M. C. Holland, C. R. Stanley, I. G. Thayne, and D. R. S. Cumming, IEEE Electron Device Lett. 28, 849 (2007).
5. A. Khalid, C. Li, G. M. Dunn, M. J. Steer, I. G. Thayne, and M. Kuball, IEEE Electron Devices Lett. 34, 39 (2013).
6. A. Khalid, C. Li, V. Papageorgiou, N. J. Pilgrim, G. M. Dunn, and D. R. S. Cumming, Microwave and optical tech. Lett. 55, 686 (2013).
7. Y. Wang, L. A. Yang, W. Mao, S. Long, and Y. Hao, IEEE Trans. electron devices 60, 1600 (2013).
8. A. Khalid, C. Li, N. J. Pilgrim, M. C. Holland, G. M. Dunn, and D. R. S. Cumming, Physica status solidi (c) 8, 316 (2011);
8.M. Montes, G. Dunn, A. Stephen, A. Khalid, C. Li, D. Cumming, C. H. Oxley, R. H. Hopper, and M. Kuball, IEEE Trans. electron devices 59, 654 (2012).
9. K. Y. Xu, G. Wang, and A. M. Song, Appl. Phys. Lett. 93, 233506 (2008).
10. N. Ma, B. Shen, F. J. Xu, L. W. Lu, Z. H. Feng, Z. G. Zhang, S. B. Dun, C. P. Wen, J. Y. Wang, F. Lin, D. T. Zhang, and M. Sun, Appl. Phys. Lett. 96, 242104 (2010).
11. A. Íñiguez–de-la-Torre, I. Íñiguez–de-la-Torre, J. Mateos, and T. González, Appl. Phys. Lett. 99, 062109 (2011).
12. A. M. Song, M. Missous, P. Omling, A. P. Peaker, L. Samuelson, and W. Seifert, Appl. Phys. Lett. 83, 1881 (2003).
13. M. Åberg, J. Saijets, A. M. Song and M. Prunnila, Phys. Scr. T114, 23 (2004);
13.A. M. Song, M. Missous, P. Omling, W. Seifert, and L. Samuelson, Appl. Phys. Lett. 86, 042106 (2005);
13.G. Farhi, E. Saracco, J. Beerens, D. Morris, S. A. Charlebois, and J.-P. Raskin, Solid-State Electron. 51, 1245 (2007).
14. C. Balocco, M. Halsall, N. Q. Vinh, and A. M. Song, J. Phys. Conden. Matt. 20, 384203 (2008);
14.C. Balocco, S. R. Kasjoo, X. F. Lu, L. Q. Zhang, Y. Alimi, Y. S. Winnerl, and A. M. Song, Appl. Phys. Lett. 98, 223501 (2011).
15. K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, J. Appl. Phys. 103, 113708 (2008).
16. S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine, Nature 437, 389 (2005).
17. J-F. Millithaler, I. Íñiguez-de-la-Torre, A. Íñiguez-de-la-Torre, T. González, P. Sangaré, G. Ducournau, C. Gaquière, and J. Mateos, Appl. Phys. Lett. 104, 073509 (2014).
18. K. Y. Xu, J. W. Xiong, A. M. Song, and G. Wang, Semicond. Sci. Technol. 26, 095026 (2011).
19. K. Y. Xu, Z. N. Wang, Y. N. Wang, J. W. Xiong, and G. Wang, J. Nanomaterials 2013, 124354 (2013).
20. K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, IEEE Trans. Nanotechnol. 7, 451 (2008).
21. T. Sadi, F. Dessenne, and J-L. Thobel, J. Appl. Phys. 105, 053707 (2009);
21.T. Sadi and J.-L. Thobel, J. Appl. Phys. 106, 083709 (2009).
22. I. Íñiguez–de-la-Torre, T. González, D. Pardo, C. Gardès, Y. Roelens, S. Bollaert, A. Curutchet, C. Gaquiere, and J. Mateos, Semicond. Sci. Technol. 25, 125013 (2010).
23. I. Íñiguez-de-la-Torre, J. Mateos, T. González, D. Pardo, J. S. Galloo, S. Bollaert, Y. Roelens, and A. Cappy, Semicond. Sci. Technol. 22, 663 (2007);
23.G. Farhi, D. Morris, S. A. Charlebois, and J.-P. Raskin, Nanotechnology 22, 435203 (2011).
24. R. Adler, Proc. I. R. E and Waves and Electrons June, 351 (1946).

Data & Media loading...


Article metrics loading...



Characteristics of phase-locking between Gunn effect-based planar nano-oscillators are studied using an ensemble Monte Carlo (EMC) method. Directly connecting two oscillators in close proximity, e.g. with a channel distance of 200 nm, only results in incoherent oscillations. In order to achieve in-phase oscillations, additional considerations must be taken into account. Two coupling paths are shown to exist between oscillators. One coupling path results in synchronization and the other results in anti-phase locking. The coupling strength through these two paths can be adjusted by changing the connections between oscillators. When two identical oscillators are in the anti-phase locking regime, fundamental components of oscillations are cancelled. The resulting output consists of purely second harmonic oscillations with a frequency of about 0.66 . This type of second harmonic generation is desired for higher frequency applications since no additional filter system is required. This transient phase-locking process is further analyzed using Adler's theory. The locking range is extracted, and a criterion for the channel length difference required for realizing phased arrays is obtained. This work should aid in designing nano-oscillator arrays for high power applications and developing directional transmitters for wireless communications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd