Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
2. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, Science 270, 961 (1995).
3. C. Rao, A. Raju, V. Ponnambalam, S. Parashar, and N. Kumar, Phys. Rev. B 61, 594 (2000).
4. M. Fiebig, K. Miyano, Y. Tomiyoka, and Y. Tokura, Science 280, 1925 (1998).
5. A. Guha, A. K. Raychaudhuri, A. R. Raju, and C. N. Rao, Phys. Rev. B 62, 5320 (2000).
6. S. Dong, C. Zhu, Y. Wang, F. Yuan, K. F. Wang, and J.-M. Liu, J. Phys. Condens. Matter 19, 266202 (2007).
7. L. Ghivelder and F. Parisi, Phys. Rev. B 71, 184425 (2005).
8. A. J. Millis, Nature 392, 147 (1998).
9. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
10. K. Dörr, J. Phys. D. Appl. Phys. 39, R125 (2006).
11. T. Dhakal, J. Tosado, and A. Biswas, Phys. Rev. B 75, 092404 (2007).
12. G. Singh, P. K. Rout, R. Porwal, and R. C. Budhani, Appl. Phys. Lett. 101, 022411 (2012).
13. P. G. de Gennes, Phys. Rev. 118, 141 (1960).
14. A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).
15. W. Prellier, Ph. Lecoeur, and B. Mercey, J. Phys. Condens. Matter 13, R915 (2001).
16. A.-M. Haghiri-Gosnet and J.-P. Renard, J. Phys. D:. Appl. Phys. 36, R127 (2003).
17. D. Gillaspie, J. X. Ma, H.-Y. Zhai, T. Z. Ward, H. M. Christen, E. W. Plummer, and J. Shen, J. Appl. Phys. 99, 08S901 (2006).
18. F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).
19. G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 90, 012509 (2007).
20. R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, Appl. Phys. Lett. 73, 3294 (1998).
21. J. Z. Sun, D. W. Abraham, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 74, 3017 (1999).
22. Y. Yang, Z. L. Luo, H. Huang, Y. Gao, J. Bao, X. G. Li, S. Zhang, Y. G. Zhao, X. Chen, G. Pan, and C. Gao, Appl. Phys. Lett. 98, 153509 (2011).
23. Y. Yang, M. M. Yang, Z. L. Luo, H. L. Huang, H. Wang, J. Bao, C. Hu, G. Pan, Y. Yao, Y. Liu, X. G. Li, S. Zhang, Y. G. Zhao, and C. Gao, Appl. Phys. Lett. 100, 043506 (2012).
24. Y. Yang, Z. L. Luo, M. M. Yang, H. L. Huang, H. Wang, J. Bao, G. Pan, C. Gao, Q. Hao, S. Wang, M. Jokubaitis, W. Zhang, G. Xiao, Y. Yao, Y. Liu, and X. G. Li, Appl. Phys. Lett. 102, 033501 (2013).
25. M. Uehara, S. Mori, C. Chen, and S.-W. Cheong, Nature 399, 560 (1999).
26. K. J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, and Z. X. Shen, Science 329, 190 (2010).
27. T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. Yin, and J. Shen, Nat. Phys. 5, 885 (2009).
28. J. Q. He, V. V. Volkov, T. Asaka, S. Chaudhuri, R. C. Budhani, and Y. Zhu, Phys. Rev. B 82, 224404 (2010).
29. V. N. Krivoruchko, S. I. Khartsev, A. D. Prokhorov, V. I. Kamenev, R. Szymczak, M. Baran, and M. Berkowski, J. Magn Magn Mater 207, 168 (1999).
30. F. Macià, G. Abril, N. Domingo, J. M. Hernandez, J. Tejada, and S. Hill, EPL 82, 37005 (2008).
31. F. Macià, A. Hernández-Mínguez, G. Abril, J. M. Hernandez, A. García-Santiago, J. Tejada, F. Parisi, and P. V. Santos, Phys. Rev. B 76, 174424 (2007).
32. Q. X. Zhu, W. Wang, S. W. Yang, X. M. Li, Y. Wang, H.-U. Habermeier, H. S. Luo, H. L. W. Chan, X. G. Li, and R. K. Zheng, Appl. Phys. Lett. 101, 172906 (2012).
33. W. Prellier, E. Buzin, C. Simon, B. Mercey, M. Hervieu, S. de Brion, and G. Chouteau, Phys. Rev. B 66, 024432 (2002).
34. D. K. Baisnab, T. Geetha Kumary, A. T. Satya, A. Mani, J. Janaki, R. Nithya, L. S. Vaidhyanathan, M. P. Janawadkar, and A. Bharathi, J. Magn. Magn. Mater. 323, 2823 (2011).
35. A. Karmakar, S. Majumdar, A. K. Singh, S. Patnaik, and S. Giri, J. Magn. Magn. Mater. 324, 649 (2012).

Data & Media loading...


Article metrics loading...



Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in LaPrCaMnO (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001) SrTiO (tensile strain), LaAlO (compressive strain) and NdGaO (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd