Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4881881
1.
1. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R1689
2.
2. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, Science 270, 961 (1995).
http://dx.doi.org/10.1126/science.270.5238.961
3.
3. C. Rao, A. Raju, V. Ponnambalam, S. Parashar, and N. Kumar, Phys. Rev. B 61, 594 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.594
4.
4. M. Fiebig, K. Miyano, Y. Tomiyoka, and Y. Tokura, Science 280, 1925 (1998).
http://dx.doi.org/10.1126/science.280.5371.1925
5.
5. A. Guha, A. K. Raychaudhuri, A. R. Raju, and C. N. Rao, Phys. Rev. B 62, 5320 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5320
6.
6. S. Dong, C. Zhu, Y. Wang, F. Yuan, K. F. Wang, and J.-M. Liu, J. Phys. Condens. Matter 19, 266202 (2007).
http://dx.doi.org/10.1088/0953-8984/19/26/266202
7.
7. L. Ghivelder and F. Parisi, Phys. Rev. B 71, 184425 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184425
8.
8. A. J. Millis, Nature 392, 147 (1998).
http://dx.doi.org/10.1038/32348
9.
9. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
10.
10. K. Dörr, J. Phys. D. Appl. Phys. 39, R125 (2006).
http://dx.doi.org/10.1088/0022-3727/39/7/R01
11.
11. T. Dhakal, J. Tosado, and A. Biswas, Phys. Rev. B 75, 092404 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.092404
12.
12. G. Singh, P. K. Rout, R. Porwal, and R. C. Budhani, Appl. Phys. Lett. 101, 022411 (2012).
http://dx.doi.org/10.1063/1.4734732
13.
13. P. G. de Gennes, Phys. Rev. 118, 141 (1960).
http://dx.doi.org/10.1103/PhysRev.118.141
14.
14. A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).
http://dx.doi.org/10.1063/1.367310
15.
15. W. Prellier, Ph. Lecoeur, and B. Mercey, J. Phys. Condens. Matter 13, R915 (2001).
http://dx.doi.org/10.1088/0953-8984/13/48/201
16.
16. A.-M. Haghiri-Gosnet and J.-P. Renard, J. Phys. D:. Appl. Phys. 36, R127 (2003).
http://dx.doi.org/10.1088/0022-3727/36/8/201
17.
17. D. Gillaspie, J. X. Ma, H.-Y. Zhai, T. Z. Ward, H. M. Christen, E. W. Plummer, and J. Shen, J. Appl. Phys. 99, 08S901 (2006).
http://dx.doi.org/10.1063/1.2162050
18.
18. F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).
http://dx.doi.org/10.1063/1.126363
19.
19. G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 90, 012509 (2007).
http://dx.doi.org/10.1063/1.2429903
20.
20. R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, Appl. Phys. Lett. 73, 3294 (1998).
http://dx.doi.org/10.1063/1.122749
21.
21. J. Z. Sun, D. W. Abraham, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 74, 3017 (1999).
http://dx.doi.org/10.1063/1.124050
22.
22. Y. Yang, Z. L. Luo, H. Huang, Y. Gao, J. Bao, X. G. Li, S. Zhang, Y. G. Zhao, X. Chen, G. Pan, and C. Gao, Appl. Phys. Lett. 98, 153509 (2011).
http://dx.doi.org/10.1063/1.3579994
23.
23. Y. Yang, M. M. Yang, Z. L. Luo, H. L. Huang, H. Wang, J. Bao, C. Hu, G. Pan, Y. Yao, Y. Liu, X. G. Li, S. Zhang, Y. G. Zhao, and C. Gao, Appl. Phys. Lett. 100, 043506 (2012).
http://dx.doi.org/10.1063/1.3676044
24.
24. Y. Yang, Z. L. Luo, M. M. Yang, H. L. Huang, H. Wang, J. Bao, G. Pan, C. Gao, Q. Hao, S. Wang, M. Jokubaitis, W. Zhang, G. Xiao, Y. Yao, Y. Liu, and X. G. Li, Appl. Phys. Lett. 102, 033501 (2013).
http://dx.doi.org/10.1063/1.4788723
25.
25. M. Uehara, S. Mori, C. Chen, and S.-W. Cheong, Nature 399, 560 (1999).
http://dx.doi.org/10.1038/21142
26.
26. K. J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, and Z. X. Shen, Science 329, 190 (2010).
http://dx.doi.org/10.1126/science.1189925
27.
27. T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. Yin, and J. Shen, Nat. Phys. 5, 885 (2009).
http://dx.doi.org/10.1038/nphys1419
28.
28. J. Q. He, V. V. Volkov, T. Asaka, S. Chaudhuri, R. C. Budhani, and Y. Zhu, Phys. Rev. B 82, 224404 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.224404
29.
29. V. N. Krivoruchko, S. I. Khartsev, A. D. Prokhorov, V. I. Kamenev, R. Szymczak, M. Baran, and M. Berkowski, J. Magn Magn Mater 207, 168 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00535-1
30.
30. F. Macià, G. Abril, N. Domingo, J. M. Hernandez, J. Tejada, and S. Hill, EPL 82, 37005 (2008).
http://dx.doi.org/10.1209/0295-5075/82/37005
31.
31. F. Macià, A. Hernández-Mínguez, G. Abril, J. M. Hernandez, A. García-Santiago, J. Tejada, F. Parisi, and P. V. Santos, Phys. Rev. B 76, 174424 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.174424
32.
32. Q. X. Zhu, W. Wang, S. W. Yang, X. M. Li, Y. Wang, H.-U. Habermeier, H. S. Luo, H. L. W. Chan, X. G. Li, and R. K. Zheng, Appl. Phys. Lett. 101, 172906 (2012).
http://dx.doi.org/10.1063/1.4761948
33.
33. W. Prellier, E. Buzin, C. Simon, B. Mercey, M. Hervieu, S. de Brion, and G. Chouteau, Phys. Rev. B 66, 024432 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.024432
34.
34. D. K. Baisnab, T. Geetha Kumary, A. T. Satya, A. Mani, J. Janaki, R. Nithya, L. S. Vaidhyanathan, M. P. Janawadkar, and A. Bharathi, J. Magn. Magn. Mater. 323, 2823 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.06.024
35.
35. A. Karmakar, S. Majumdar, A. K. Singh, S. Patnaik, and S. Giri, J. Magn. Magn. Mater. 324, 649 (2012).
http://dx.doi.org/10.1016/j.jmmm.2011.09.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4881881
Loading
/content/aip/journal/adva/4/6/10.1063/1.4881881
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4881881
2014-06-03
2016-09-28

Abstract

Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in LaPrCaMnO (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001) SrTiO (tensile strain), LaAlO (compressive strain) and NdGaO (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4881881.html;jsessionid=SmtTs37SGvEFCU3aPgiidY1I.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4881881&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4881881&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4881881'
Right1,Right2,Right3,