Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4881980
1.
1. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” Acs Nano 5, 2004 (2011).
http://dx.doi.org/10.1021/nn103050w
2.
2. S. S. Walavalkar, A. P. Homyk, C. E. Hofmann, M. D. Henry, C. Shin, H. A. Atwater, and A. Scherer, “Size tunable visible and near-infrared photoluminescence from vertically etched silicon quantum dots,” Applied Physics Letters 98, 153114 (2011).
http://dx.doi.org/10.1063/1.3580768
3.
3. L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, and K. Wang, “A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots,” Nature Nanotechnology 7, 453 (2012).
http://dx.doi.org/10.1038/nnano.2012.74
4.
4. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nature Materials 5, 887 (2006).
http://dx.doi.org/10.1038/nmat1763
5.
5. E. Sargent, “Photodetectors: A sensitive pair,” Nature Nanotechnology 7, 349 (2012).
http://dx.doi.org/10.1038/nnano.2012.98
6.
6. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nature Nanotechnology 5, 391 (2010).
http://dx.doi.org/10.1038/nnano.2010.78
7.
7. E. Zibik, T. Grange, B. Carpenter, N. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, and H. Liu, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nature Materials 8, 803 (2009).
http://dx.doi.org/10.1038/nmat2511
8.
8. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nature Photonics 5, 416 (2011).
http://dx.doi.org/10.1038/nphoton.2011.120
9.
9. W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nature Communications 4 (2013).
10.
10. L. M. Herz and R. T. Phillips, “Quantum computing: Fine lines from dots,” Nature Materials 1, 212 (2002).
http://dx.doi.org/10.1038/nmat777
11.
11. C. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. Zakharov, D. Bimberg, and P. Werner, “Electron escape from InAs quantum dots,” Physical Review B 60, 14265 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.14265
12.
12. H. Zhang, Y. Chen, G. Zhou, C. Tang, and Z. Wang, “Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots,” Nanoscale Research Letters 7, 1 (2012).
http://dx.doi.org/10.1186/1556-276X-7-1
13.
13. A. Baskaran and P. Smereka, “Mechanisms of Stranski-Krastanov growth,” Journal of Applied Physics 111, 044321 (2012).
http://dx.doi.org/10.1063/1.3679068
14.
14. M. Cusack, P. Briddon, and M. a. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Physical Review B 54, 2300 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R2300
15.
15. T. Walther, A. Cullis, D. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Physical Review Letters 86, 2381 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2381
16.
16. A. Cullis, D. Norris, T. Walther, M. Migliorato, and M. Hopkinson, “Stranski-Krastanow transition and epitaxial island growth,” Physical Review B 66, 081305 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.081305
17.
17. G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi, “Towards quantum-dot arrays of entangled photon emitters,” Nature Photonics (2013).
18.
18. P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Applied Physics Letters 90, 183103 (2007).
http://dx.doi.org/10.1063/1.2732825
19.
19. B. Liang, P. Wong, N. Pavarelli, J. Tatebayashi, T. Ochalski, G. Huyet, and D. Huffaker, “Lateral interdot carrier transfer in an InAs quantum dot cluster grown on a pyramidal GaAs surface,” Nanotechnology 22, 055706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/5/055706
20.
20. C.-W. Hsu, A. Lundskog, K. F. Karlsson, U. Forsberg, E. Janzén, and P. O. Holtz, “Single excitons in InGaN quantum dots on GaN pyramid arrays,” Nano Letters 11, 2415 (2011).
http://dx.doi.org/10.1021/nl200810v
21.
21. G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. Ohlberg, and R. S. Williams, “Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes,” Science 279, 353 (1998).
http://dx.doi.org/10.1126/science.279.5349.353
22.
22. S. Gaan, G. He, R. M. Feenstra, J. Walker, and E. Towe, “Size, shape, composition, and electronic properties of InAs/GaAs quantum dots by scanning tunneling microscopy and spectroscopy,” Journal of Applied Physics 108, 114315 (2010).
http://dx.doi.org/10.1063/1.3518680
23.
23. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Physical Review B 52, 11969 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.11969
24.
24. V.-G. Stoleru, D. Pal, and E. Towe, “Self-assembled (In, Ga) As/GaAs quantum-dot nanostructures: strain distribution and electronic structure,” Physica E: Low-dimensional Systems and Nanostructures 15, 131 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00459-9
25.
25. C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Physical Review B 74, 245331 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245331
26.
26. M. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots,” Physics Letters A 373, 3079 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.06.042
27.
27. G. Rezaei, Z. Mousazadeh, and B. Vaseghi, “Nonlinear optical properties of a two-dimensional elliptic quantum dot,” Physica E: Low-dimensional Systems and Nanostructures 42, 1477 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.122
28.
28. A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In (Ga) As/GaAs quantum dots,” Physical Review B 76, 205324 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205324
29.
29. M. Sabaeian and A. Khaledi-Nasab, “Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer,” Applied Optics 51, 4176 (2012).
http://dx.doi.org/10.1364/AO.51.004176
30.
30. S. Nahayi, S. Shojaei, and A. Asgari, “Excitonic properties of a spherical semiconductor quantum dot: The role of phonons,” Optik-International Journal for Light and Electron Optics (2012).
31.
31. S. Liang and W. Xie, “Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot,” Physica B: Condensed Matter 406, 2224 (2011).
http://dx.doi.org/10.1016/j.physb.2011.03.035
32.
32. G. Safarpour, M. Barati, and M. Vahdani, “Electron–hole transition energy for a spherical quantum dot confined in a nano-cylindrical wire,” Physica E: Low-dimensional Systems and Nanostructures 44, 728 (2011).
http://dx.doi.org/10.1016/j.physe.2011.11.021
33.
33. W. Xie, “A study of nonlinear optical properties of a negative donor quantum dot,” Optics Communications 284, 4756 (2011).
http://dx.doi.org/10.1016/j.optcom.2011.05.033
34.
34. W. Xie, “Polaron effects on linear and nonlinear optical properties of a two-electron quantum dot,” Physica B: Condensed Matter 406, 1805 (2011).
http://dx.doi.org/10.1016/j.physb.2011.02.032
35.
35. W. Xie, “Laser radiation effects on optical absorptions and refractive index in a quantum dot,” Optics Communications 283, 3703 (2010).
http://dx.doi.org/10.1016/j.optcom.2010.05.040
36.
36. G. Rezaei, M. Vahdani, and B. Vaseghi, “Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot,” Current Applied Physics 11, 176 (2011).
http://dx.doi.org/10.1016/j.cap.2010.07.002
37.
37. L. Seravalli, C. Bocchi, G. Trevisi, and P. Frigeri, “Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 μm: Effects of InGaAs capping,” Journal of Applied Physics 108, 114313 (2010).
http://dx.doi.org/10.1063/1.3518049
38.
38. L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20, 275703 (2009).
http://dx.doi.org/10.1088/0957-4484/20/27/275703
39.
39. S. Lee, O. L. Lazarenkova, P. von Allmen, F. Oyafuso, and G. Klimeck, “Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots,” Physical Review B 70, 125307 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125307
40.
40. A. Babinski, J. Borysiuk, S. Kret, M. Czyz, A. Golnik, S. Raymond, and Z. Wasilewski, “Natural quantum dots in the InAs/GaAs wetting layer,” Applied Physics Letters 92, 171104 (2008).
http://dx.doi.org/10.1063/1.2918836
41.
41. Y. Chen, X. Ye, and Z. Wang, “Evolution of wetting layer in InAs/GaAs quantum dot system,” Nanoscale Research Letters 1, 79 (2006).
http://dx.doi.org/10.1007/s11671-006-9013-9
42.
42. C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” Quantum Electronics, IEEE Journal of 48, 1144 (2012).
http://dx.doi.org/10.1109/JQE.2012.2205224
43.
43. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 μm tunnel injection quantum-dot lasers,” Applied Physics Letters 86, 153109 (2005).
http://dx.doi.org/10.1063/1.1899230
44.
44. M. Hugues, M. Teisseire, J.-M. Chauveau, B. Vinter, B. Damilano, J.-Y. Duboz, and J. Massies, “Optical determination of the effective wetting layer thickness and composition in InAs/Ga (In) As quantum dots,” Physical Review B 76, 075335 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075335
45.
45. D. Matthews, H. Summers, P. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers,” Applied Physics Letters 81, 4904 (2002).
http://dx.doi.org/10.1063/1.1532549
46.
46. S.-S. Li, J.-B. Xia, Z. Yuan, Z. Xu, W. Ge, X. R. Wang, Y. Wang, J. Wang, and L. Chang, “Effective-mass theory for InAs/GaAs strained coupled quantum dots,” Physical Review B 54, 11575 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11575
47.
47. V. V. Arsoski, M. Ž. Tadić, and F. M. Peeters, “Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In (Ga) As/GaAs ringlike quantum dots,” Physical Review B 87, 085314 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085314
48.
48. T. Markussen, P. Kristensen, B. Tromborg, T. W. Berg, and J. Mørk, “Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots,” Physical Review B 74, 195342 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195342
49.
49. F. Schrey, L. Rebohle, T. Müller, G. Strasser, K. Unterrainer, D. P. Nguyen, N. Regnault, R. Ferreira, and G. Bastard, “Intraband transitions in quantum dot–superlattice heterostructures,” Physical Review B 72, 155310 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.155310
50.
50. M. Roy, P. Maksym, D. Bruls, P. Offermans, and P. Koenraad, “Generalized effective-mass theory of subsurface scanning tunneling microscopy: Application to cleaved quantum dots,” Physical Review B 82, 195304 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195304
51.
51. M. Roy and P. Maksym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Physical Review B 68, 235308 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.235308
52.
52. A. Rostami, H. Rasooli Saghai, N. Sadoogi, and H. Baghban Asghari Nejad, “Proposal for ultra-high performance infrared quantum dot,” Optics Express 16, 2752 (2008).
http://dx.doi.org/10.1364/OE.16.002752
53.
53. A. Asgari and S. Razi, “High performances III-Nitride quantum dot infrared photodetector operating at room temperature,” Opt. Express 18, 14604 (2010).
http://dx.doi.org/10.1364/OE.18.014604
54.
54. C. Sun, P. Lu, Z. Yu, H. Cao, and L. Zhang, “Wetting layers effect on InAs/GaAs quantum dots,” Physica B: Condensed Matter (2012).
55.
55. I. Mikhailov, L. García, and J. Marín, “Effect of wetting layer on electron–hole correlation in quantum discs and rings,” Journal of Physics: Condensed Matter 18, 9493 (2006).
http://dx.doi.org/10.1088/0953-8984/18/41/016
56.
56. Y. Chen, J. Sun, P. Jin, Z. Wang, and Z. Yang, “Evolution of wetting layer of InAs/GaAs quantum dots studied by reflectance difference spectroscopy,” Applied Physics Letters 88, 071903 (2006).
http://dx.doi.org/10.1063/1.2175489
57.
57. G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” Journal of Applied Physics 111, 123522 (2012).
http://dx.doi.org/10.1063/1.4729315
58.
58. L. Seravalli, G. Trevisi, P. Frigeri, R. Royce, and D. Mowbray, “Energy states and carrier transport processes in metamorphic InAs quantum dots,” Journal of Applied Physics 112, 034309 (2012).
http://dx.doi.org/10.1063/1.4744981
59.
59. S. Sanguinetti, K. Watanabe, T. Tateno, M. Wakaki, N. Koguchi, T. Kuroda, F. Minami, and M. Gurioli, “Role of the wetting layer in the carrier relaxation in quantum dots,” Applied Physics Letters 81, 613 (2002).
http://dx.doi.org/10.1063/1.1495525
60.
60. S. Sanguinetti, K. Watanabe, T. Tateno, M. Gurioli, P. Werner, M. Wakaki, and N. Koguchi, “Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer,” Journal of Crystal Growth 253, 71 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01016-9
61.
61. S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Applied Physics Letters 81, 3067 (2002).
http://dx.doi.org/10.1063/1.1516632
62.
62. K. Sun, J. Chen, B. Lee, C. Lee, and A. Kechiantz, “Carrier capture and relaxation in InAs quantum dots,” Nanotechnology 16, 1530 (2005).
http://dx.doi.org/10.1088/0957-4484/16/9/021
63.
63. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, and L. Miglio, “Key role of the wetting layer in revealing the hidden path of Ge/Si (001) Stranski-Krastanow growth onset,” Physical Review B 80, 205321 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205321
64.
64. P. Boucaud, S. Sauvage, and J. Houel, “Intersublevel transitions in self-assembled quantum dots,” Comptes Rendus Physique 9, 840 (2008).
http://dx.doi.org/10.1016/j.crhy.2008.10.005
65.
65. S. Anchala, P. Purohit, and K. Mathur, “Linear and nonlinear intersubband optical properties of Si quantum dot embedded in oxide, nitride, and carbide matrix,” Journal of Applied Physics 110, 114320 (2011).
http://dx.doi.org/10.1063/1.3665687
66.
66. J.-Z. Zhang and I. Galbraith, “Intraband absorption for InAs/GaAs quantum dot infrared photodetectors,” Applied Physics Letters 84, 1934 (2004).
http://dx.doi.org/10.1063/1.1687459
67.
67. J.-Z. Zhang and I. Galbraith, “Erratum:” Intraband absorption for InAs/GaAs quantum dot infrared photodetectors,” [Appl. Phys. Lett. 84, 1934 (2004)],Applied Physics Letters 85, 5105 (2004).
http://dx.doi.org/10.1063/1.1827347
68.
68. M. Sabaeian and M. Shahzadeh, “Investigation of in-plane- and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: size and shape matter,” Submitted to Optics Express (2014).
69.
69. E. Homeyer, J. Houel, X. Checoury, F. Delgehier, S. Sauvage, P. Boucaud, R. Braive, L. Le Gratiet, L. Leroy, and A. Miard, “Resonant coupling of quantum dot intersublevel transitions with midinfrared photonic crystal modes,” Applied Physics Letters 95, 041108 (2009).
http://dx.doi.org/10.1063/1.3189812
70.
70. T. A. Ameen and Y. M. El-Batawy, “Polarization dependence of absorption by bound electrons in self-assembled quantum dots,” Journal of Applied Physics 113, 193102 (2013).
http://dx.doi.org/10.1063/1.4805061
71.
71. T. A. Ameen, Y. M. El-Batawy, and A. Abouelsaood, “Modeling light absorption by bound electrons in self-assembled quantum dots,” Journal of Applied Physics 113, 083101 (2013).
http://dx.doi.org/10.1063/1.4793269
72.
72. T. A. Ameen, Y. M. El-Batawy, and A. Abouelsaood, “Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors,” Journal of Applied Physics 115, 063703 (2014).
http://dx.doi.org/10.1063/1.4864762
73.
73. L. Seravalli, G. Trevisi, and P. Frigeri, “Calculation of metamorphic two-dimensional quantum energy system: Application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures,” Journal of Applied Physics 114, 184309 (2013).
http://dx.doi.org/10.1063/1.4830021
74.
74. V. R. Chaganti and V. Apalkov, “Intraband optical transition in InGaAs/GaAs pyramidal quantum dots,” Journal of Applied Physics 113, 064310 (2013).
http://dx.doi.org/10.1063/1.4790870
75.
75. G. Jolley, I. McKerracher, L. Fu, H. Tan, and C. Jagadish, “The conduction band absorption spectrum of interdiffused InGaAs/GaAs quantum dot infrared photodetectors,” Journal of Applied Physics 111, 123719 (2012).
http://dx.doi.org/10.1063/1.4729833
76.
76. L. Shi and Z. Yan, “Effects of electric field and shape on the ground state energy of an exciton bound to an ionized donor impurity in ellipsoidal quantum dots,” Journal of Applied Physics 114, 194301 (2013).
http://dx.doi.org/10.1063/1.4831664
77.
77. H. Taş and M. Şahin, “The inter-sublevel optical properties of a spherical quantum dot-quantum well with and without a donor impurity,” Journal of Applied Physics 112, 053717 (2012).
http://dx.doi.org/10.1063/1.4751483
78.
78. M. Şahin, F. Tek, and A. Erdinç, “The photoionization cross section of a hydrogenic impurity in a multi-layered spherical quantum dot,” Journal of Applied Physics 111, 084317 (2012).
http://dx.doi.org/10.1063/1.4705410
79.
79. M. Şahin, S. Nizamoglu, O. Yerli, and H. V. Demir, “Reordering orbitals of semiconductor multi-shell quantum dot-quantum well heteronanocrystals,” Journal of Applied Physics 111, 023713 (2012).
http://dx.doi.org/10.1063/1.3678585
80.
80. M. Kırak, S. Yılmaz, M. Şahin, and M. Gencaslan, “The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot,” Journal of Applied Physics 109, 094309 (2011).
http://dx.doi.org/10.1063/1.3582137
81.
81. S. Purohit and K. Mathur, “Third harmonic generation in intraband transitions of spherical silicon quantum dots,” Journal of Applied Physics 112, 094306 (2012).
http://dx.doi.org/10.1063/1.4763477
82.
82. H. Tas and M. Sahin, “The inter-sublevel optical properties of a spherical quantum dot-quantum well with and without a donor impurity,” Journal of Applied Physics 112, 053717 (2012).
http://dx.doi.org/10.1063/1.4751483
83.
83. L. Lu, W. Xie, and H. Hassanabadi, “Linear and nonlinear optical absorption coefficients and refractive index changes in a two-electron quantum dot,” Journal of Applied Physics 109, 063108 (2011).
http://dx.doi.org/10.1063/1.3560541
84.
84. S. Chattopadhyay, P. Sen, J. T. Andrews, and P. K. Sen, “Semiconductor core-shell quantum dot: a low temperature nano-sensor material,” Journal of Applied Physics 111, 034310 (2012).
http://dx.doi.org/10.1063/1.3681309
85.
85. S. Wu and L. Wan, “Electronic structures in a CdSe spherical quantum dot in a magnetic field: Diagonalization method and variational method,” Journal of Applied Physics 111, 063711 (2012).
http://dx.doi.org/10.1063/1.3695454
86.
86. F. Ding, R. Singh, J. Plumhof, T. Zander, V. Křápek, Y. Chen, M. Benyoucef, V. Zwiller, K. Dörr, and G. Bester, “Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress,” Physical Review Letters 104, 067405 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.067405
87.
87. L. Fonseca, J. Jimenez, J. Leburton, and R. M. Martin, “Self-consistent calculation of the electronic structure and electron-electron interaction in self-assembled InAs-GaAs quantum dot structures,” Physical Review B 57, 4017 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.4017
88.
88. N. Vukmirović, Ž. Gačević, Z. Ikonić, D. Indjin, P. Harrison, and V. Milanović, “Intraband absorption in InAs/GaAs quantum dot infrared photodetectors—effective mass versus k × p modelling,” Semiconductor Science and Technology 21, 1098 (2006).
http://dx.doi.org/10.1088/0268-1242/21/8/021
89.
89. A. Zhou and W. Sheng, “Electron and hole effective masses in self-assembled quantum dots,” The European Physical Journal B 68, 233 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00098-2
90.
90. R. Melnik and K. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Modelling and Simulation in Materials Science and Engineering 12, 465 (2004).
http://dx.doi.org/10.1088/0965-0393/12/3/008
91.
91. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2008).
92.
92. T. Brunhes, P. Boucaud, S. Sauvage, A. Lemaître, J.-M. Gérard, F. Glotin, R. Prazeres, and J.-M. Ortega, “Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots,” Physical Review B 61, 5562 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5562
93.
93. S. Sauvage, P. Boucaud, J.-M. Gérard, and V. Thierry-Mieg, “In-plane polarized intraband absorption in InAs/GaAs self-assembled quantum dots,” Physical Review B 58, 10562 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.10562
94.
94. G. A. Narvaez and A. Zunger, “Calculation of conduction-to-conduction and valence-to-valence transitions between bound states in (In, Ga) As/GaAs quantum dots,” Physical Review B 75, 085306 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.085306
95.
95. S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with sp transition in InAs/GaAs self-assembled quantum dots,” Physical Review B 63, 113312 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.113312
96.
96. L. Li, M. Mexis, P. Ridha, M. Bozkurt, G. Patriarche, P. Smowton, P. Blood, P. Koenraad, and A. Fiore, “Control of polarization and dipole moment in low-dimensional semiconductor nanostructures,” Applied Physics Letters 95, 221116 (2009).
http://dx.doi.org/10.1063/1.3269592
97.
97. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Letters 7, 2999 (2007).
http://dx.doi.org/10.1021/nl0713023
98.
98. P. Ridha, L. Li, A. Fiore, G. Patriarche, M. Mexis, and P. M. Smowton, “Polarization dependence study of electroluminescence and absorption from InAs/GaAs columnar quantum dots,” Applied Physics Letters 91, 191123 (2007).
http://dx.doi.org/10.1063/1.2811720
99.
99. M. Usman, S. Heck, E. Clarke, P. Spencer, H. Ryu, R. Murray, and G. Klimeck, “Experimental and theoretical study of polarization-dependent optical transitions in InAs quantum dots at telecommunication-wavelengths (1300-1500 nm),” Journal of Applied Physics 109, 104510 (2011).
http://dx.doi.org/10.1063/1.3587167
100.
100. P. Maletinsky, A. Badolato, and A. Imamoglu, “Dynamics of quantum dot nuclear spin polarization controlled by a single electron,” Physical Review Letters 99, 056804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.056804
101.
101. T. Belhadj, C.-M. Simon, T. Amand, P. Renucci, B. Chatel, O. Krebs, A. Lemaître, P. Voisin, X. Marie, and B. Urbaszek, “Controlling the polarization eigenstate of a quantum dot exciton with light,” Physical Review Letters 103, 086601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.086601
102.
102. W. J. Choi, J. D. Song, J. I. Lee, K. C. Kim, and T. G. Kim, “In As/GaAs quantum dot lasers with dots in an asymmetric quantum well structure,” Physica B: Condensed Matter 376–377, 886 (2006).
http://dx.doi.org/10.1016/j.physb.2005.12.221
103.
103. Z.-Y. Xu, Z.-D. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Physical Review B 54, 11528 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11528
104.
104. J. S. KIM and I.-H. BAE, “Optical Properties of Wetting Layer in InAs Quantum Dots at Different Growth Temperatures,” Journal of the Korean Physical Society 42, 483 (2003).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4881980
Loading
/content/aip/journal/adva/4/6/10.1063/1.4881980
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4881980
2014-06-04
2016-12-10

Abstract

The authors report on the impact of wetting layer thickness and quantum dot size on the electronic and optical properties of dome-shaped InAs/GaAs quantum dots (QDs) with strained potential. Two wetting layer thicknesses of 0.5 and 2.0 nm were compared. A strong size dependence of P-to-S transition energy, transition dipole moment, oscillator strength, and linear and third-order nonlinear susceptibilities were concluded. The P-to-S transition dipole moment was shown to be purely in-plane polarization. The linear and nonlinear absorption and dispersion showed a red shift when the wetting layer thickness was increased. Our results revealed that the nonlinear susceptibility is much more sensitive to QD size compared to the linear susceptibility. An interpretation of the results was presented based on the probability density of finding the electron inside the dot and wetting layer. The results are in good agreement with previously reported experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4881980.html;jsessionid=J9xtwxR9RKUiTR_KHQjOuOQv.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4881980&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4881980&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4881980'
Right1,Right2,Right3,