Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4882176
1.
1. M. H. Crawford, IEEE J. Select. Topics Quantum Electron. 15, 1028 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2013476
2.
2. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, and S. W. Koch, Phys. Stat. Sol. (c) 6, S913 (2009).
http://dx.doi.org/10.1002/pssc.200880950
3.
3. Ü. Özgür, H. Liu, X. Li, X. Ni, and H. Morkoç, Proc. IEEE 98, 1180 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2043210
4.
4. J. Piprek, Phys. Stat. Sol. (a) 207, 2217 (2010).
http://dx.doi.org/10.1002/pssa.201026149
5.
5. J. Cho, E. F. Schubert, and J. K. Kim, Laser & Photon. Rev. 7, 408 (2013).
http://dx.doi.org/10.1002/lpor.201200025
6.
6. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 114, 071101 (2013).
http://dx.doi.org/10.1063/1.4816434
7.
7. J. Piprek, and S. Li, in Optoelectronic Devices: Advanced Simulation and Analysis, edited by J. Piprek (Springer, New York, 2005) Chap. 10, pp. 293312.
8.
8. S. Y. Karpov, in Nitride Semiconductor Devices: Principles and Simulation, edited by J. Piprek (Wiley-VCH Verlag, Weinheim, 2007) Chap. 14, pp. 303325.
9.
9. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).
http://dx.doi.org/10.1063/1.3367897
10.
10. S. Huang, Y. Xian, B. Fan, Z. Zheng, Z. Chen, W. Jia, H. Jiang, and G. Wang, J. Appl. Phys. 110, 064511 (2011).
http://dx.doi.org/10.1063/1.3642955
11.
11. H. Zhao, G. Liu, R. A. Arif, and N. Tansu, Semiconductor Sci. Tech. 54, 1119 (2010).
12.
12. T.-S. Kim, B.-J. Ahn, Y. Dong, K.-N. Park, J.-G. Lee, Y. Moon, H.-K. Yuh, S.-C. Choi, J.-H. Lee, S.-K. Hong, and J.-H. Song, Appl. Phys. Lett. 100, 071910 (2012).
http://dx.doi.org/10.1063/1.3685717
13.
13. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, and A. Matulionis, J. Appl. Phys. 108, 033112 (2010).
http://dx.doi.org/10.1063/1.3460271
14.
14. M. V. Kisin and H. S. El-Ghoroury, Phys. Stat. Sol. (c) 8, 2264 (2011).
http://dx.doi.org/10.1002/pssc.201000891
15.
15. Ü. Özgür, X. Ni, X. Li, J. Lee, S. Liu, S. Okur, V. Avrutin, A. Matulionis, and H. Morkoç, Semiconductor Sci. Tech. 26, 014022 (2011).
http://dx.doi.org/10.1088/0268-1242/26/1/014022
16.
16. C. S. Xia, Z. M. S. Li, Y. Sheng, L. W. Cheng, W. D. Hu, and W. Lu, Opt. Quantum Electron. 45, 597 (2013).
http://dx.doi.org/10.1007/s11082-012-9647-z
17.
17. M. Deppner, F. Römer, and B. Witzigmann, Phys. Stat. Sol. RRL 6, 418 (2012).
http://dx.doi.org/10.1002/pssr.201206367
18.
18. H. Li, X. Liu, J. Wang, D. Jin, H. Zhang, S. Yang, S. Liu, W. Mao, Y. Hao, Q. Zhu, and Z. Wang, J. Appl. Phys. 112, 113712 (2012).
http://dx.doi.org/10.1063/1.4768707
19.
19. L. Dong, J. V. Mantese, V. Avrutin, Ü. Özgür, H. Morkoç, and S. P. Alpay, J. Appl. Phys. 114, 043715 (2013).
http://dx.doi.org/10.1063/1.4816254
20.
20. S.-I. Park, J.-I. Lee, D.-H. Jang, H.-S. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, IEEE J. Quantum Electron. 48, 500 (2012).
http://dx.doi.org/10.1109/JQE.2012.2186610
21.
21. M. A. Caro, S. Schulz, and E. P. O'Reilly, Phys. Rev. B 88, 214103 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.214103
22.
22. P. Blood, IEEE J. Quantum Electron. 36, 354 (2000).
http://dx.doi.org/10.1109/3.825883
23.
23. W. W. Chow, Opt. Express 19, 21818 (2011).
http://dx.doi.org/10.1364/OE.19.021818
24.
24. D. Saguatti, L. Bidinelli, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni, R. Butendeich, and B. Hahn, IEEE Trans. Electron Devices 59, 1402 (2012).
http://dx.doi.org/10.1109/TED.2012.2186579
25.
25. I.-G. Choi, D.-P. Han, J. Yun, K. S. Kim, D.-S. Shin, and J.-I. Shim, Appl. Phys. Express 6, 052105 (2013).
http://dx.doi.org/10.7567/APEX.6.052105
26.
26. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 99, 181127 (2011).
http://dx.doi.org/10.1063/1.3658031
27.
27. J. Hader, J. V. Moloney, and S. W. Koch, in SPIE Photonics West, Physics and Simulation of Optoelectronic Devices XIV, Vol. 6115, Proceedings of the SPIE (San Jose, CA, 2006) p. 61151T.
http://dx.doi.org/10.1117/12.641744
28.
28. A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010).
http://dx.doi.org/10.1063/1.3330870
29.
29. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
http://dx.doi.org/10.1063/1.3446889
30.
30. Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, Appl. Phys. Lett. 97, 133507 (2010).
http://dx.doi.org/10.1063/1.3493654
31.
31. G.-B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, Appl. Phys. Lett. 100, 161106 (2012).
http://dx.doi.org/10.1063/1.4704366
32.
32. G.-B. Lin, Q. Shan, A. J. Birkel, J. Cho, E. F. Schubert, M. H. Crawford, K. R. Westlake, and D. D. Koleske, Appl. Phys. Lett. 101, 241104 (2012).
http://dx.doi.org/10.1063/1.4770317
33.
33. Y. Lin, Y. Zhang, Z. Liu, L. Su, J. Zhang, T. Wei, and Z. Chen, Appl. Phys. Lett. 101, 252103 (2012).
http://dx.doi.org/10.1063/1.4772549
34.
34.All simulation results discussed in Section III have been determined with the “optimal” SRH lifetimes and Auger coefficients listed in Table I.
35.
35. X. Guo and E. F. Schubert, J. Appl. Phys. 90, 4191 (2001).
http://dx.doi.org/10.1063/1.1403665
36.
36. H. Kim, S.-J. Park, and H. Hwang, IEEE Trans. Electron Devices 48, 1065 (2001).
http://dx.doi.org/10.1109/16.925227
37.
37. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, Appl. Phys. Lett. 97, 251110 (2010).
http://dx.doi.org/10.1063/1.3529470
38.
38. Y. Y. Kudryk and A. V. Zinovchuk, Semiconductor Sci. Tech. 26, 095007 (2011).
http://dx.doi.org/10.1088/0268-1242/26/9/095007
39.
39. K.-S. Lee, Phys. Stat. Sol. (a) 209, 2630 (2012).
http://dx.doi.org/10.1002/pssa.201228473
40.
40. V. Malyutenko, S. Bolgov, and A. Tykhonov, IEEE Photon. Technol. Lett. 24, 1124 (2012).
http://dx.doi.org/10.1109/LPT.2012.2196426
41.
41. Y. Zhang, H. Zheng, E. Guo, Y. Cheng, J. Ma, L. Wang, Z. Liu, X. Yi, G. Wang, and J. Li, J. Appl. Phys. 113, 014502 (2013).
http://dx.doi.org/10.1063/1.4772669
42.
42. Y. Y. Kudryk, A. K. Tkachenko, and A. V. Zinovchuk, Semiconductor Sci. Tech. 27, 055013 (2012).
http://dx.doi.org/10.1088/0268-1242/27/5/055013
43.
43. C.-K. Li and Y.-R. Wu, IEEE Trans. Electron Devices 59, 400 (2012).
http://dx.doi.org/10.1109/TED.2011.2176132
44.
44. E. Jung, S. Kim, and H. Kim, IEEE Electron Device Lett. 34, 277 (2013).
http://dx.doi.org/10.1109/LED.2012.2228841
45.
45. J. Piprek and S. Li, Opt. Quantum Electron. 42, 89 (2010).
http://dx.doi.org/10.1007/s11082-011-9437-z
46.
46. H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, Appl. Phys. Lett. 100, 131109 (2012).
http://dx.doi.org/10.1063/1.3698113
47.
47. S. Chiaria, E. Furno, M. Goano, and E. Bellotti, IEEE Trans. Electron Devices 57, 60 (2010).
http://dx.doi.org/10.1109/TED.2009.2034792
48.
48. M. Meneghini, S. Vaccari, A. Garbujo, N. Trivellin, D. Zhu, C. J. Humphreys, M. Calciati, M. Goano, F. Bertazzi, G. Ghione, E. Bellotti, G. Meneghesso, and E. Zanoni, Japan. J. Appl. Phys. 52, 08JG09 (2013).
49.
49.In the following, the total optical power generated inside the active region has been taken into account to determine the internal quantum efficiency (IQE), but for better consistency with the experimental L/I curves one could consider only the power emitted from the top surface of the mesa.
50.
50. J. Piprek, T. M. Katona, S. P. DenBaars, and S. Li, in SPIE Photonics West, Light-Emitting Diodes: Research, Manufacturing, and Applications VIII, Vol. 5366, Proceedings of the SPIE (San Jose, CA, 2004) pp. 127136.
http://dx.doi.org/10.1117/12.543266
51.
51. S. Li, Z. Q. Li, O. Shmatov, C. S. Xia, and W. Lu, in 2005 MRS Fall Meeting, Vol. 892, Materials Research Society Symposium Proceedings (MRS, 2005) pp. 0892FF12.
http://dx.doi.org/10.1557/PROC-0892-FF12-12
52.
52. Y. Sheng, O. Shmatov, and Z. M. S. Li, in 6th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD '06) (Singapore, 2006) pp. 1920.
http://dx.doi.org/10.1109/NUSOD.2006.306720
53.
53. M. Othman, S. Ahmad, F. Sa'ad, A. Alias, A. Aziz, and M. Hashim, in 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (Penang, Malaysia, 2012) pp. 530534.
http://dx.doi.org/10.1109/ICCSCE.2012.6487203
54.
54. Y. Sheng, C. S. Xia, Z. M. S. Li, and L. W. Cheng, in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2012) (Shanghai, China, 2012) pp. 2324.
http://dx.doi.org/10.1109/NUSOD.2012.6316488
55.
55. C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, J. Appl. Phys. 113, 183104 (2013).
http://dx.doi.org/10.1063/1.4804415
56.
56. K. A. Bulashevich, V. F. Mymrin, S. Y. Karpov, I. Zhmakin, and A. Zhmakin, J. Comp. Phys. 213, 214 (2006).
http://dx.doi.org/10.1016/j.jcp.2005.08.011
57.
57. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).
http://dx.doi.org/10.1063/1.2822442
58.
58. M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, J. Appl. Phys. 106, 114508 (2009).
http://dx.doi.org/10.1063/1.3266014
59.
59. M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, Appl. Phys. Lett. 95, 201108 (2009).
http://dx.doi.org/10.1063/1.3266520
60.
60. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, IEEE Trans. Electron Devices 57, 79 (2010).
http://dx.doi.org/10.1109/TED.2009.2035538
61.
61. D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, and C. Sone, Appl. Phys. Lett. 99, 041112 (2011).
http://dx.doi.org/10.1063/1.3618673
62.
62. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express 19, A991 (2011).
http://dx.doi.org/10.1364/OE.19.00A991
63.
63. S. Chhajed, J. Cho, E. F. Schubert, J. K. Kim, D. D. Koleske, and M. H. Crawford, Phys. Stat. Sol. (a) 208, 947 (2011).
http://dx.doi.org/10.1002/pssa.201026668
64.
64. W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, J.-F. Carlin, and N. Grandjean, J. Appl. Phys. 109, 093106 (2011).
http://dx.doi.org/10.1063/1.3585872
65.
65. M. Brendel, A. Kruse, H. Jönen, L. Hoffmann, H. Bremers, U. Rossow, and A. Hangleiter, Appl. Phys. Lett. 99, 031106 (2011).
http://dx.doi.org/10.1063/1.3614557
66.
66. D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, Phys. Stat. Sol. (b) 250, 283 (2013).
http://dx.doi.org/10.1002/pssb.201248286
67.
67. F. Bertazzi, M. Goano, and E. Bellotti, Appl. Phys. Lett. 101, 011111 (2012).
http://dx.doi.org/10.1063/1.4733353
68.
68. F. Bertazzi, X. Zhou, M. Goano, G. Ghione, and E. Bellotti, Appl. Phys. Lett. 103, 081106 (2013).
http://dx.doi.org/10.1063/1.4819129
69.
69. S. Y. Karpov and Y. N. Makarov, Appl. Phys. Lett. 81, 4721 (2002).
http://dx.doi.org/10.1063/1.1527225
70.
70. T. Langer, A. Kruse, F. A. Ketzer, A. Schwiegel, L. Hoffmann, H. Jönen, H. Bremers, U. Rossow, and A. Hangleiter, Phys. Stat. Sol. (c) 8, 2170 (2011).
http://dx.doi.org/10.1002/pssc.201001051
71.
71. L. Lu, Y. H. Zhu, Z. T. Chen, and T. Egawa, J. Appl. Phys. 109, 113537 (2011).
http://dx.doi.org/10.1063/1.3596592
72.
72. A. Armstrong, T. A. Henry, D. D. Koleske, M. H. Crawford, K. R. Westlake, and S. R. Lee, Appl. Phys. Lett. 101, 162102 (2012).
http://dx.doi.org/10.1063/1.4759003
73.
73. L. C. Le, D. G. Zhao, D. S. Jiang, L. Li, L. L. Wu, P. Chen, Z. S. Liu, Z. C. Li, Y. M. Fan, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, Appl. Phys. Lett. 101, 252110 (2012).
http://dx.doi.org/10.1063/1.4772548
74.
74. S.-K. Lee, H. S. Lim, J.-H. Lee, H.-S. Kwack, H. K. Cho, H.-K. Kwon, and M. S. Oh, J. Appl. Phys. 111, 103115 (2012).
http://dx.doi.org/10.1063/1.4720447
75.
75. D.-Y. Lee, S.-H. Han, D. J. Lee, J. W. Lee, D.-J. Kim, Y. S. Kim, S.-T. Kim, and J.-Y. Leem, Appl. Phys. Lett. 102, 011115 (2013).
http://dx.doi.org/10.1063/1.4773588
76.
76. N. A. Modine, A. M. Armstrong, M. H. Crawford, and W. W. Chow, J. Appl. Phys. 114, 144502 (2013).
http://dx.doi.org/10.1063/1.4824065
77.
77. R. Vaxenburg, E. Lifshitz, and A. L. Efros, Appl. Phys. Lett. 102, 031120 (2013).
http://dx.doi.org/10.1063/1.4789364
78.
78. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
79.
79. A. David and M. J. Grundmann, Appl. Phys. Lett. 97, 033501 (2010).
http://dx.doi.org/10.1063/1.3462916
80.
80. C. Netzel, S. Hatami, V. Hoffmann, T. Wernicke, A. Knauer, M. Kneissl, and M. Weyers, Phys. Stat. Sol. (c) 8, 2151 (2011).
http://dx.doi.org/10.1002/pssc.201000956
81.
81. Y. Dong, J.-H. Song, H.-J. Kim, T.-S. Kim, B.-J. Ahn, J.-H. Song, I.-S. Cho, W.-T. Im, Y. Moon, S.-M. Hwang, S.-K. Hong, and S.-W. Lee, J. Appl. Phys. 109, 043103 (2011).
http://dx.doi.org/10.1063/1.3549160
82.
82. C. Lu, L. Wang, J. Lu, R. Li, L. Liu, D. Li, N. Liu, L. Li, W. Cao, W. Yang, W. Chen, W. Du, C.-T. Lee, and X. Hu, J. Appl. Phys. 113, 013102 (2013).
http://dx.doi.org/10.1063/1.4772683
83.
83. J. Hader, J. V. Moloney, S. W. Koch, and W. W. Chow, IEEE J. Select. Topics Quantum Electron. 9, 688 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.818342
84.
84. M. Gladysiewicz, R. Kudrawiec, M. Syperek, J. Misiewicz, M. Siekacz, G. Cywinski, C. Skierbiszewski, and T. Suski, Phys. Stat. Sol. (c) 8, 2273 (2011).
http://dx.doi.org/10.1002/pssc.201001048
85.
85. M. Gladysiewicz, R. Kudrawiec, J. Misiewicz, M. Siekacz, G. Cywinski, and C. Skierbiszewski, Phys. Stat. Sol. (c) 8, 2282 (2011).
http://dx.doi.org/10.1002/pssc.201001050
86.
86. H. Haug and S. W. Koch, Phys. Rev. A 39, 1887 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.1887
87.
87. W. W. Chow, A. Knorr, and S. W. Koch, Appl. Phys. Lett. 67, 754 (1995).
http://dx.doi.org/10.1063/1.115215
88.
88. A. Girndt, F. Jahnke, S. W. Koch, and W. W. Chow, Mater. Sci. Eng. B 50, 174 (1997).
http://dx.doi.org/10.1016/S0921-5107(97)00158-X
89.
89. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals. Physics of the Gain Materials (Springer-Verlag, Berlin, 1999).
90.
90. S.-H. Park, D. Ahn, and J.-W. Kim, Appl. Phys. Lett. 94, 041109 (2009).
http://dx.doi.org/10.1063/1.3075853
91.
91. S.-H. Park, Y.-T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, Phys. Stat. Sol. (a) 208, 195 (2011).
http://dx.doi.org/10.1002/pssa.201026420
92.
92. J. Hader, J. V. Moloney, and S. W. Koch, in SPIE Photonics West, Gallium Nitride Materials and Devices VIII, Vol. 8625, Proceedings of the SPIE (San Francisco, CA, 2013) pp. 86251M86251M.
http://dx.doi.org/10.1117/12.2005134
93.
93. M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, and P. P. Ruden, IEEE Trans. Electron Devices ED-48, 535 (2001).
http://dx.doi.org/10.1109/16.906448
94.
94. E. Bellotti, F. Bertazzi, and M. Goano, J. Appl. Phys. 101, 123706 (2007).
http://dx.doi.org/10.1063/1.2748353
95.
95. F. Bertazzi, M. Moresco, and E. Bellotti, J. Appl. Phys. 106, 063718 (2009).
http://dx.doi.org/10.1063/1.3213363
96.
96. E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, and M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013).
http://dx.doi.org/10.1109/TED.2013.2266577
97.
97. V. O. Turin, Solid-State Electron. 49, 1678 (2005).
http://dx.doi.org/10.1016/j.sse.2005.09.002
98.
98. E. M. Azoff, IEEE Trans. Electron Devices 36, 609 (1989).
http://dx.doi.org/10.1109/16.22464
99.
99. Z.-M. S. Li, Y.-Y. Li, and G.-P. Ru, J. Appl. Phys. 110, 093109 (2011).
http://dx.doi.org/10.1063/1.3660207
100.
100. M. Grupen and K. Hess, IEEE J. Quantum Electron. 34, 120 (1998).
http://dx.doi.org/10.1109/3.655016
101.
101. M. E. Vallone, J. Appl. Phys. 114, 053704 (2013).
http://dx.doi.org/10.1063/1.4817242
102.
102. C. S. Xia, S. Li, Y. Sheng, L. W. Cheng, W. D. Hu, and W. Lu, in 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2012) (Shanghai, China, 2012) pp. 2122.
http://dx.doi.org/10.1109/NUSOD.2012.6316487
103.
103. C. S. Xia, Z. M. S. Li, Z. Q. Li, Y. Sheng, Z. H. Zhang, W. Lu, and L. W. Cheng, Appl. Phys. Lett. 100, 263504 (2012).
http://dx.doi.org/10.1063/1.4731625
104.
104. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. Scheffler, Phys. Rev. B 77, 075202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075202
105.
105. M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.8132
106.
106. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
107.
107. K. A. Bulashevich and S. Y. Karpov, Phys. Stat. Sol. (c) 5, 2066 (2008).
http://dx.doi.org/10.1002/pssc.200778414
108.
108. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, Appl. Phys. Lett. 101, 131111 (2012).
http://dx.doi.org/10.1063/1.4754688
109.
109. A. Hangleiter, Phys. Rev. B 48, 9146 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.9146
110.
110. E. Kioupakis, Q. Yan, and C. G. Van de Walle, Appl. Phys. Lett. 101, 231107 (2012).
http://dx.doi.org/10.1063/1.4769374
111.
111. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).
http://dx.doi.org/10.1063/1.2953543
112.
112. R. Vaxenburg, A. Rodina, E. Lifshitz, and A. L. Efros, Appl. Phys. Lett. 103, 221111 (2013).
http://dx.doi.org/10.1063/1.4833915
113.
113. D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115321
114.
114. S. Hammersley, T. J. Badcock, D. Watson-Parris, M. J. Godfrey, P. Dawson, M. J. Kappers, and C. J. Humphreys, Phys. Stat. Sol. (c) 8, 2194 (2011).
http://dx.doi.org/10.1002/pssc.201001001
115.
115. Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, Appl. Phys. Lett. 101, 083505 (2012).
http://dx.doi.org/10.1063/1.4747532
116.
116. Y.-R. Wu, S. ting Yeh, D.-W. Lin, C. kang Li, H.-C. Kuo, and J. S. Speck, in 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2013) (Vancouver, 2013) pp. 111112.
http://dx.doi.org/10.1109/NUSOD.2013.6633149
117.
117. R. Sarkissian, S. T. Roberts, T.-W. Yeh, S. Das, S. E. Bradforth, J. O'Brien, and P. D. Dapkus, Appl. Phys. Lett. 103, 041123 (2013).
http://dx.doi.org/10.1063/1.4816757
118.
118. F. Bertazzi, M. Goano, and E. Bellotti, in SPIE Photonics West, Physics and Simulation of Optoelectronic Devices XXI, Vol. 8619, Proceedings of the SPIE (San Francisco, CA, 2013) pp. 86191G186191G9.
http://dx.doi.org/10.1117/12.2008735
119.
119. F. Bertazzi, X. Zhou, M. Goano, E. Bellotti, and G. Ghione, “Full-band electronic structure calculation of semiconductor nanostructures: a reduced-order approach,” arXiv:1304.1019 (2013).
120.
120. D. Jena, J. Simon, A. K. Wang, Y. Cao, K. Goodman, J. Verma, S. Ganguly, G. Li, K. Karda, V. Protasenko, C. Lian, T. Kosel, P. Fay, and H. Xing, Phys. Stat. Sol. (a) 208, 1511 (2011).
http://dx.doi.org/10.1002/pssa.201001189
121.
121. J. Pal, M. A. Migliorato, C.-K. Li, Y.-R. Wu, B. G. Crutchley, I. P. Marko, and S. J. Sweeney, J. Appl. Phys. 114, 073104 (2013).
http://dx.doi.org/10.1063/1.4818794
122.
122. W. W. Chow, M. H. Crawford, J. Y. Tsao, and M. Kneissl, Appl. Phys. Lett. 97, 121105 (2010).
http://dx.doi.org/10.1063/1.3490232
123.
123. I.-L. Lu, Y.-R. Wu, and J. Singh, Phys. Stat. Sol. (c) 8, 2393 (2011).
http://dx.doi.org/10.1002/pssc.201001054
124.
124. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
125.
125. F. Bertazzi, M. Goano, X. Zhou, M. Calciati, G. Ghione, M. Matsubara, and E. Bellotti, “Comment on “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop” [Phys. Rev. Lett. 110, 177406 (2013)],” arXiv:1305.2512 (2013).
126.
126. J. Wu, J. Appl. Phys. 106, 011101 (2009).
http://dx.doi.org/10.1063/1.3155798
127.
127. S. Chiaria, M. Goano, and E. Bellotti, IEEE J. Quantum Electron. 47, 661 (2011).
http://dx.doi.org/10.1109/JQE.2011.2104940
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4882176
Loading
/content/aip/journal/adva/4/6/10.1063/1.4882176
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4882176
2014-06-05
2016-09-25

Abstract

Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a coefficient in the 10−30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4882176.html;jsessionid=VyquywkYZ3ZLyOqhg-eEMKtM.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4882176&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4882176&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4882176'
Right1,Right2,Right3,