Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nature Mater. 3, 601 (2004).
2.G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. V. Duyne, Nano Lett. 7, 1947 (2007).
3.C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, Adv. Funct. Mater. 21, 4719 (2011).
4.J. H. Sung, J. S. Yang, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and B. H. O., Appl. Phys. Lett. 96, 261105 (2010).
5.D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Luang, and C. C. Yang, Nanotechnology 18, 265402 (2007).
6.C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, Nanotechnology 21, 205201 (2010).
7.M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, Adv. Mater. 20, 1253 (2008).
8.C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, Appl. Phys. Lett. 98, 051106 (2011).
9.Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, Appl. Phys. Lett. 102, 161103 (2013).
10.L. W. Jang, J. W. Ju, D. W. Jeon, J. W. Park, A. Y. Polyakov, S. Lee, J. H. Baek, S. M. Lee, Y. H. Cho, and I. H. Lee, Opt. Express 20, 6036 (2012).
11.J. Henson, J. DiMaria, and R. Paiella, J. Appl. Phys. 106, 093111 (2009).
12.J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, Opt. Lett. 37, 79 (2012).
13.C. C. Kao, Y. K. Su, C. L. Lin, and J. J. Chen, IEEE photon. Technol. Lett. 22, 984 (2010).
14.T. B. Wei, K. Wu, D. Lan, Q. F. Yan, Y. Chen, C. X. Du, J. X. Wang, Y. P. Zeng, and J. M. Li, Appl. Phys. Lett. 101, 211111 (2012).
15.K. Wu, T. B. Wei, D. Lan, X. C. Wei, H. Y. Zheng, Y. Chen, H. X. Lu, K. Huang, J. X. Wang, Y. Luo, and J. M. Li, Appl. Phys. Lett. 103, 241107 (2013).
16.T. B. Wei, Q. F. Kong, J. X. Wang, J. Li, Y. P. Zeng, G. H. Wang, J. M. Li, Y. X. Liao, and F. T. Yi, Opt. Express 19, 1065 (2011).
17.M. H. Lo, P. M. Tu, C. H. Wang, Y. J. Cheng, C. W. Hung, S. C. Hsu, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and C. M. Liu, Appl. Phys. Lett. 95, 211103 (2009).
18.C. Y. Cho, J. J. Kim, S. J. Lee, S. H. Hong, K. J. Lee, S. Y. Yim, and S. J. Park, Appl. Phys. Express 5, 122103 (2012).
19.C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 64, 245339 (2001).
20.T. B. Wei, X. L. Ji, K. Wu, H. Y. Zheng, C. X. Du, Y. Chen, Q. F. Yan, L. X. Zhao, Z. C. Zhou, J. X. Wang, and J. M. Li, Opt. Lett. 39, 379 (2014).
21.H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, Appl. Phys. Lett. 98, 151115 (2011).

Data & Media loading...


Article metrics loading...



Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in -GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth -GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd