1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electromagnetic complementary media with arbitrary geometries and non-conformal boundaries
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4882424
1.
1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
2.
2. J. B. Pendry, Opt. Express 11, 755 (2003).
http://dx.doi.org/10.1364/OE.11.000755
3.
3. S. A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005).
http://dx.doi.org/10.1088/0034-4885/68/2/R06
4.
4. J. B. Pendry and S. A. Ramakrishna, J. Phys.: Condens. Matter 15, 6345 (2003).
http://dx.doi.org/10.1088/0953-8984/15/37/004
5.
5. K. Kobayashi, J. Phys.: Condens. Matter 18, 3703 (2006).
http://dx.doi.org/10.1088/0953-8984/18/15/016
6.
6. U. Leonhardt, Science 312, 1777 (2006).
http://dx.doi.org/10.1126/science.1126493
7.
7. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
http://dx.doi.org/10.1126/science.1125907
8.
8. Y. Luo, J. J. Zhang, H. S. Chen, B.-I. Wu, and L.-X. Ran, Prog. Electromagn. Res. 95, 167 (2009).
http://dx.doi.org/10.2528/PIER09070805
9.
9. T. Yang, H. Y. Chen, X. Luo, and H. Ma, Opt. Express 16, 18545 (2008).
http://dx.doi.org/10.1364/OE.16.018545
10.
10. X. D. Luo, T. Yang, Y. W. Gu, H. Y. Chen, and H. R. Ma, Appl. Phys. Lett. 94, 223513 (2009).
http://dx.doi.org/10.1063/1.3149694
11.
11. J. J. Zhang, Y. Luo, H. S. Chen, J. T. Huangfu, B.-l. Wu, L. X. Ran, and J. A. Kong, Opt. Express 17, 6203 (2009).
http://dx.doi.org/10.1364/OE.17.006203
12.
12. Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, Appl. Phys. Lett. 95, 193506 (2009).
http://dx.doi.org/10.1063/1.3264085
13.
13. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.093901
14.
14. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 253902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.253902
15.
15. H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, N. J. Phys. 10, 113016 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/113016
16.
16. H. Y. Chen, X. D. Luo, and H. R. Ma, Opt. Express 16,14603 (2008).
http://dx.doi.org/10.1364/OE.16.014603
17.
17. M. Yan, W. Yan, and M. Qiu, Phys. Rev. B 78, 125113 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125113
18.
18. J. Ng, H. Y. Chen, and C. T. Chan, Opt. Lett. 34, 644 (2009).
http://dx.doi.org/10.1364/OL.34.000644
19.
19. H. Y. Chen and C. T. Chan, Opt. Lett. 34, 2649 (2009).
http://dx.doi.org/10.1364/OL.34.002649
20.
20. D.-H. Kwon, Appl. Phys. Lett. 95, 173503 (2009).
http://dx.doi.org/10.1063/1.3257374
21.
21. H. Y. Chen, C. T. Chen, S. Y. Liu, and Z. F. Lin, N. J. Phys. 11, 083012 (2009).
http://dx.doi.org/10.1088/1367-2630/11/8/083012
22.
22. X. F. Zang and C. Jiang, Opt. Express 18, 6891 (2010).
http://dx.doi.org/10.1364/OE.18.006891
23.
23. C. F. Yang, J. J. Yang, and M. Huang, Opt. Express 19, 1147 (2011).
http://dx.doi.org/10.1364/OE.19.001147
24.
24. J. J. Zhang, Y. Luo, H. S. Chen, and B.-l. Wu, J. Opt. Soc. Am. B 25, 1776 (2008).
http://dx.doi.org/10.1364/JOSAB.25.001776
25.
25. A. Nicolet, F. Zolla, and S. Guenneau, Opt. Lett., 33, 1584 (2008).
http://dx.doi.org/10.1364/OL.33.001584
26.
26. C. Li and F. Li, Opt. Express 16, 13414 (2008).
http://dx.doi.org/10.1364/OE.16.013414
27.
27. G. W. Milton and N.-A. P. Nicorovici, Proc. R. Soc. Lond. A 462, 3027 (2006).
http://dx.doi.org/10.1098/rspa.2006.1715
28.
28. G. Gok and A. Grbic, Antennas Propag., IEEE Trans. Antennas Propag. 58, 1559 (2010).
http://dx.doi.org/10.1109/TAP.2010.2044351
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4882424
Loading
/content/aip/journal/adva/4/6/10.1063/1.4882424
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4882424
2014-06-06
2014-08-28

Abstract

A generalized folded transformation procedure is presented for the space with arbitrary shapes. General expressions for the constitute parameters of complementary media are deduced, which can be readily applied to design complementary media based transformation optics devices (CMTOD) with arbitrary shapes. It's no longer limited to the situation when the inner and outer boundaries of the CMTOD are conformal or similar shapes, and can be available for the non-conformal situations. Three kinds of CMTOD are designed and studied, which involves a super-lens, an external cloak that hides object outside the cloaking shell, and an illusion optics device that transforms one object to another. Full-wave simulations are carried out to validate the proposed approach. The generalization introduced here makes a step forward for the flexible design of CMTOD with arbitrary geometries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4882424.html;jsessionid=7pa55f3ttfhi2.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4882424&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electromagnetic complementary media with arbitrary geometries and non-conformal boundaries
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4882424
10.1063/1.4882424
SEARCH_EXPAND_ITEM