1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4883215
1.
1. S. Rehman, PhD thesis, Pakistan Institute of Engineering and Applied Sciences (2005).
2.
2. V. I. Ferronsky and V. A. Polyakov, (Springer science+Business Media, 2012).
3.
3. S. A. Copenhaver, S. Krishnaswami, K. K. Turekian, N. Epler, and J. K. Cochran, Geochimica et Cosmochimica Acta 57, 597603 (1993).
http://dx.doi.org/10.1016/0016-7037(93)90370-C
4.
4. WHO Handbook on Indoor Radon, A Public Health Perspective, (World Health Organization, 2009).
5.
5. M. El Hofy, H. El Samman, and W. Arafa, Radiation Measurements 31, 241244 (1999).
http://dx.doi.org/10.1016/S1350-4487(99)00112-2
6.
6. A. Gisbertz, M. Hochstrate, I. Köhler, E. Pitt, and A. Scharmann, Radiation Measurements 28, 489494 (1997).
http://dx.doi.org/10.1016/S1350-4487(97)00126-1
7.
7. B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, Radiation Measurements 40, 731735 (2005).
http://dx.doi.org/10.1016/j.radmeas.2005.06.035
8.
8. B. Jaleh, P. Parvin, K. Mirabaszadeh, and M. Katouzi, Radiation Measurements, 38, 173183 (2004).
http://dx.doi.org/10.1016/j.radmeas.2003.09.002
9.
9. P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, Radiation Measurements, 40, 775779 (2005).
http://dx.doi.org/10.1016/j.radmeas.2005.05.008
10.
10. P. Parvin, B. Jaleh, H. R. Zangeneh, Z. Zamanipour, and Gh. R. Davoud-Abadi, Radiation Measurements, 43, S617S622 (2008).
http://dx.doi.org/10.1016/j.radmeas.2008.03.046
11.
11. M. P. Campos and E. W. Martins, International Nuclear Atlantic Conference (INAC) 2007, Brazil, ISBN: 978-85-99141-02-1 (2007).
12.
12. F. Yushui, M. Wenbin, and Q. Changzhu, Nuclear Tracks and Radiation Measurements 1993(22), 335339 (1993).
http://dx.doi.org/10.1016/0969-8078(93)90080-N
13.
13. P. Parvin, Pub. No: US 20080149838, Pub. Date: June 26 (2008).
14.
14. P. Parvin, M. Ilchi-Ghazaani, A. Bavali, V. Daneshafrooz, S. Z. Mortazavi, A. Moosakhani, A. Nazari-Golshan, M. M. Hashemi, S. S. Hosseini, and B. Mansouri, Sh. Abachi, Recent Patents on Mechanical Engineering 6, 5874 (2013).
http://dx.doi.org/10.2174/2212797611206010006
15.
15. G. Shayeganrad and P. Parvin, Progress in Nuclear Energy 51, 420433 (2009).
http://dx.doi.org/10.1016/j.pnucene.2008.09.008
16.
16. S. Kanazawa, H. Tanaka, A. Kajiwara, T. Ohkubo, Y. Nomoto, M. Kocik, J. Mizeraczyk, and J-S Chang, Thin Solid Films 515, 42664271 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.02.046
17.
17. P. K. Hopke, Progress Report, Clarkson University, July (1992).
18.
18. E. L. Holthoff and P. M. Pellegrin, Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies, Chapter 6, ISBN: 978-1-4398-6975-8 (2012).
19.
19. C. Humphreys and H. J. Kostkowski, Journal of Research and National. Bureau of Standards 49, 7384 (1952).
http://dx.doi.org/10.6028/jres.049.010
20.
20. P. Fichet, P. Mauchien, and C. Moulin, Applied Spectroscopy 53, 11111117 (1999).
http://dx.doi.org/10.1366/0003702991947892
21.
21. V. Sturm, L. Peter, and R. Noll, Applied Spectroscopy 54, 1275 (2000).
http://dx.doi.org/10.1366/0003702001951183
22.
22. E. H. Piepmeier, Analytical Applications of Lasers (Wiley, New York, 1986).
23.
23. D. A. Cremers and L. J. Radziemski, (John Wiley and Sons Ltd., West Sussex, England, 2006).
24.
24. L. Moenke-Blankenburg, Laser Micro Analysis (Wiley, New York, 1989).
25.
25. K. Kagawa, M. Ohtani, S. Yokoi, and S. Nakajima, Spectrochimica Acta Part B 39, 525 (1984).
http://dx.doi.org/10.1016/0584-8547(84)80060-9
26.
26. W. Sdorra and K. Niemax, Mikrochimica Acta 107, 319327 (1992).
http://dx.doi.org/10.1007/BF01244487
27.
27. E. D. McNaghten, A. M. Parkes, B. C. Griffiths, A. I. Whitehouse, and S. Palanco, Spectrochimica Acta Part B 64, 11111118 (2009).
http://dx.doi.org/10.1016/j.sab.2009.07.011
28.
28. V. E. Peet, Applied Physics B 62, 415420 (1996).
http://dx.doi.org/10.1007/BF01081204
29.
29. M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, Applied Spectroscopy 55,739744 (2001).
http://dx.doi.org/10.1366/0003702011952433
30.
30. H. R. Dehghanpour and P. Parvin, Applied Physics B: Lasers and Optics 101, 611616 (2010).
http://dx.doi.org/10.1007/s00340-010-4141-4
31.
31. M. R. Joseph, Spectrochimica Acta Part B 49, 89103 (1994).
http://dx.doi.org/10.1016/0584-8547(94)80158-4
32.
32. M. Pardede, H. Kurniawan, T. J. Lie, R. Hedwig, N. Idris, T. Kobayashi, T. Maruyama, Y. I. Lee, K. Kagawa, and M. O. Tjia, Journal of Applied Physics 98, 043105 (2005).
http://dx.doi.org/10.1063/1.2009820
33.
33. S. N. Abdulmadjid, M. M. Suliyanti, K. H. Kurniawan, T. J. Lie, M. Pardede, R. Hedwig, K. Kagawa, and M. O. Tjia, Applied Physics B 82, 161166 (2006).
http://dx.doi.org/10.1007/s00340-005-1973-4
34.
34. K. H. Kurniawan and K. Kagawa, Applied Spectroscopy Review 41, 99130 (2006).
http://dx.doi.org/10.1080/05704920500510687
35.
35. K. H. Kurniawan, M. Pardede, R. Hedwig, Z. S. Lie, T. J. Lie, D. P. Kurniawan, M. Ramli, K. I. Fukumoto, H. Niki, S. N. Abdulmadjid, N. Idris, T. Maruyama, K. Kagawa, and M. O. Tija, Analytical Chemistry 79, 27032707 (2007).
http://dx.doi.org/10.1021/ac061713o
36.
36. M. Ramli, K. Kagawa, S. N. Abdulmadjid, N. Idris, W. S. Budi, M. A. Marpaung, K. H. Kurniawan, T. J. Lie, M. M. Suliyanti, R. Hedwig, M. Pardede, Z. S. Lie, and M. O. Tjia, Applied Physics B 86, 729734 (2007).
http://dx.doi.org/10.1007/s00340-006-2566-6
37.
37. M. A. Naveed, A. Qayyum, A. Shujaat, and M. Zakaullah, Physics Letter A 359, 499503 (2006).
http://dx.doi.org/10.1016/j.physleta.2006.07.002
38.
38. C. A. Henry, P. K. Diwakar, and D. W. Hahn, Spectrochimica Acta Part B 62, 13901398 (2007).
http://dx.doi.org/10.1016/j.sab.2007.10.002
39.
39. S. L. Lui and N. H. Cheung, Spectrochimica Acta Part B 58, 16131623 (2003).
http://dx.doi.org/10.1016/S0584-8547(03)00139-3
40.
40. T. Ditmire, Physical Review E 54(6), 67356740 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.6735
41.
41. E. Fourkal, V. Yu. Bychenkov, W. Rozmus, R. Sydora, C. Kirkby, C. E. Capjack, S. H. Glenzer, and H. A. Baldis, 8(2), 550556 (2001).
42.
42. Wm. Lowell Morgan, Applied Physic Letter 42, 790791 (1983).
http://dx.doi.org/10.1063/1.94089
43.
43. N. A. Gorbunov, A. Grochola, P. Kruk, A. Pietruczuk, and T. Stacewicz, Plasma Sources Science Technology 11, 492497 (2002).
http://dx.doi.org/10.1088/0963-0252/11/4/316
44.
44. L. Torrisi, D. Mascali, R. Miracoli, S. Gammino, N. Gambino, L. Giuffrida, and D. Margarone, Journal of Applied Physics, 107, 123303123310 (2010).
http://dx.doi.org/10.1063/1.3429242
45.
45. Hong-Keun Kim et al., Proceeding of the National Academy of Sciences (USA), 108(29),1182111824 (2011).
http://dx.doi.org/10.1073/pnas.1104382108
46.
46. A. Bogaerts, Spectra chemical Acta part B 53, 16791703 (1998).
http://dx.doi.org/10.1016/S0584-8547(98)00201-8
47.
47. A. J. Ball, V. Hohreiter, and D. W. Hahn, Applied Spectroscopy 59, 348353 (2005).
http://dx.doi.org/10.1366/0003702053585282
48.
48. P. Parvin, G. R. Davoud-Abadi, and H. Kariminejad, Radon monitoring for earthquake prediction using hybrid UV LIDAR-Phoswich system, 23rd International Laser Radar conference, Japan (2006).
49.
49. H. Cember and T. E. Johnson, (McGraw Hill Company, New York, 2009).
50.
50. A. W. Miziolek, V. Palleschi, and I. Schechter, (Cambridge University Press, Cambridge, 2006).
51.
51. P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, Optics and Lasers in Engineering 50, 16721676 (2012).
http://dx.doi.org/10.1016/j.optlaseng.2012.03.015
52.
52. S. Z. Shoursheini, B. Sajad, and P. Parvin, Optics and Lasers in Engineering 48, 8995 (2010).
http://dx.doi.org/10.1016/j.optlaseng.2009.07.016
53.
53. M. M. Amarala, M. P. Raelea, A. Z. de Freitasa, G. S. Zahna, Optics for Arts, Architecture, and Archaeology II, Munich, Germany, June 15 (2009).
54.
54. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd edition, (Springer publication, 1984).
55.
55. N. Kumar, S. Dash, A. K. Tyagi, and B. Raj, Sadhana 35(4), 493511 (2010).
http://dx.doi.org/10.1007/s12046-010-0032-y
56.
56. S. Z. Shoursheini, P. Parvin, B. Sajad, and M. A. Bassam, Applied Spectroscopy 63, 423429 (2009).
http://dx.doi.org/10.1366/000370209787944262
57.
57. P. K. Diwakar, PhD thesis, University of Florida, ISBN: 9781109519471 (2009).
58.
58. H. R. Griem, (Academic Press, New York, (appendix 4, pp. 320) 1974).
59.
59. H. Bethe, J. Ashkin, (Wiley & Sons, Inc, New York, 1953).
60.
60. J. F. Ziegler, J. Appl. Phys / Rev. Appl. Phys. 85, 12491272 (1999).
http://dx.doi.org/10.1063/1.369844
61.
61. H. H. Heckman, (National Academy of Sciences, Washington D.C., 1970).
62.
62. Y. S. Mayya, K. P. Eappen, and K. S.V. Nambi, Radiation Protection Dosimetry 77, 177184 (1998).
http://dx.doi.org/10.1093/oxfordjournals.rpd.a032308
63.
63. M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, Radiation Physics and Chemistry 57, 1120 (2000).
http://dx.doi.org/10.1016/S0969-806X(99)00344-8
64.
64. A. Bogaerts and Z. Chen, Spectrochimica Acta Part B, 60, 12801307 (2005).
http://dx.doi.org/10.1016/j.sab.2005.06.009
65.
65. J. R. Stallcop and K. W. Billman, Plasma Physics 16, 11871189 (1974).
http://dx.doi.org/10.1088/0032-1028/16/12/008
66.
66. H. M. Niemz, (Springer Publication, Berlin, Germany, 2003).
67.
67. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, Journal of Brazilian Chemical Society 18(3), 463512 (2007).
http://dx.doi.org/10.1590/S0103-50532007000300002
68.
68. A. Chilingarian, Physical Review D 82, 043009 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.043009
69.
69. M. Kelley, The Earth's Ionosphere: Plasma Physics and Electrodynamics (Elsevier Publication, USA, 2008).
70.
70.NIST Atomic Spectra Database, http://physics.nist.gov.
71.
71. N. Wodicka and M. R. St-Onge, “Implications of U-Pb geochronology for the thermal evolution of supracrustal rocks from the Baffin segment of the Trans-Hudson Orogen,” Geological Association of Canada, Program with Abstracts 23, A200 (1998).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4883215
Loading
/content/aip/journal/adva/4/6/10.1063/1.4883215
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4883215
2014-06-10
2014-12-25

Abstract

Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4883215.html;jsessionid=b7k2jbebs93t.x-aip-live-06?itemId=/content/aip/journal/adva/4/6/10.1063/1.4883215&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4883215
10.1063/1.4883215
SEARCH_EXPAND_ITEM