Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4883235
1.
1. B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, Adv. Mater. 21, 4545 (2009).
http://dx.doi.org/10.1002/adma.200901072
2.
2. K. A. Gschneidner Jr, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R04
3.
3. A. Midya, S. N. Das, P. Mandal, S. Pandya, and V. Ganesan, Phys. Rev. B 84, 235127 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235127
4.
4. M.-H. Phan and S.-C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.07.025
5.
5. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, Nature Mater. 4, 450 (2005).
http://dx.doi.org/10.1038/nmat1395
6.
6. V. K. Pecharsky and J. K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
7.
7. O. Tegus, E. Bruck, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).
http://dx.doi.org/10.1038/415150a
8.
8. S. B. Gupta and K. G. Suresh, Appl. Phys. Lett. 102, 022408 (2013).
http://dx.doi.org/10.1063/1.4775690
9.
9. N. K. Singh, K. G. Suresh, A. K. Nigam, and S. K. Malik, J. Appl. Phys. 97, 10A301 (2005).
http://dx.doi.org/10.1063/1.1844932
10.
10. M. H. Phan, G. T. Woods, A. Chaturvedi, S. Stefanoski, G. S. Nolas, and H. Srikanth, Appl. Phys. Lett. 93, 252505 (2008).
http://dx.doi.org/10.1063/1.3055833
11.
11. M. D. Kuzmin and M. Richter, Appl. Phys. Lett. 90, 132509 (2007).
http://dx.doi.org/10.1063/1.2718271
12.
12. T. Samanta, I. Dubenko, A. Quetz, S. Stadler, and N. Ali, Appl. Phys. Lett. 101, 242405 (2012).
http://dx.doi.org/10.1063/1.4770379
13.
13. M. M. Vopson, Solid State Commun. 152, 2067 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.08.016
14.
14. C. Binek and V. Burobina, Appl. Phys. Lett. 102, 031915 (2013).
http://dx.doi.org/10.1063/1.4788690
15.
15. Y. Tokura and S. Seki, Adv. Mater. 22, 1554 (2010).
http://dx.doi.org/10.1002/adma.200901961
16.
16. T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.137201
17.
17. F. Wang, T. Zou, L.-Q. Yan, Y. Liu, and Y. Sun, Appl. Phys. Lett. 100, 122901 (2012).
http://dx.doi.org/10.1063/1.3697636
18.
18. S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Science 319, 1643 (2008).
http://dx.doi.org/10.1126/science.1154507
19.
19. Y. S. Chai, S. H. Chun, S. Y. Haam, Y. S. Oh, I. Kim, and K. H. Kim, New. J. Phys. 11, 073030 (2009).
http://dx.doi.org/10.1088/1367-2630/11/7/073030
20.
20. S. Zhilyakov, E. Naiden, and G. Ryabtsev, Russ. Phys. J. 36, 944 (1993).
http://dx.doi.org/10.1007/BF00559158
21.
21. M. LoBue, V. Loyau, F. Mazaleyrat, A. Pasko, V. Basso, M. Kuepferling, and C. P. Sasso, J. Appl. Phys. 111, 07A905 (2012).
http://dx.doi.org/10.1063/1.3670062
22.
22. H. B. Lee, S. H. Chun, K. W. Shin, B.-G. Jeon, Y. S. Chai, K. H. Kim, J. Schefer, H. Chang, S.-N. Yun, T.-Y. Joung, and J.-H. Chung, Phys. Rev. B 86, 094435 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.094435
23.
23. H. Khanduri, M. Chandra Dimri, H. Kooskora, I. Heinmaa, G. Viola, H. Ning, M. J. Reece, J. Krustok, and R. Stern, J. Appl. Phys. 112, 073903 (2012).
http://dx.doi.org/10.1063/1.4754532
24.
24. T. Kimura, Annu. Rev. Conden. Matter. Phys. 3, 93 (2012).
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125101
25.
25. H. B. Lee, Y.-S. Song, J.-H. Chung, S. H. Chun, Y. S. Chai, K. H. Kim, M. Reehuis, K. Prokeš, and S. Mat'aš, Phys. Rev. B 83, 144425 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144425
26.
26. L.-Q. Yan, S. H. Chun, Y. Sun, K. W. Shin, B.-G. Jeon, S. P. Shen, and K. H. Kim, J. Phys.: Condens. Matter 25, 256006 (2013).
http://dx.doi.org/10.1088/0953-8984/25/25/256006
27.
27. S. Kamba, V. Goian, M. Savinov, E. Buixaderas, D. Nuzhnyy, M. Maryško, M. Kempa, V. Bovtun, J. Hlinka, K. Knížek, P. Vaněk, P. Novák, J. Buršík, Y. Hiraoka, T. Kimura, K. Kouřil, and H. Štěpánková, J. Appl. Phys. 107, 104109 (2010).
http://dx.doi.org/10.1063/1.3402379
28.
28. B. K. Banerjee, Phys. Lett. 12, 16 (1964).
http://dx.doi.org/10.1016/0031-9163(64)91158-8
29.
29. L. Li, M. Kadonaga, D. Huo, Z. Qian, T. Namiki, and K. Nishimura, Appl. Phys. Lett. 101, 122401 (2012).
http://dx.doi.org/10.1063/1.4752738
30.
30. A. Waske, H. Hermann, N. Mattern, K. Skokov, O. Gutfleisch, and J. Eckert, J. Appl. Phys. 112, 123918 (2012).
http://dx.doi.org/10.1063/1.4770468
31.
31. D. X. Li, T. Yamamura, S. Nimori, Y. Homma, F. Honda, and D. Aoki, Appl. Phys. Lett. 102, 152409 (2013).
http://dx.doi.org/10.1063/1.4802260
32.
32. T. Samanta, I. Das, and S. Banerjee, Appl. Phys. Lett. 91, 152506 (2007).
http://dx.doi.org/10.1063/1.2798594
33.
33. V. Franco, J. S. Blázquez, B. Ingale, and A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012).
http://dx.doi.org/10.1146/annurev-matsci-062910-100356
34.
34. F. X. Hu, B. G. Shen, and J. R. Sun, Appl. Phys. Lett. 76, 3460 (2000).
http://dx.doi.org/10.1063/1.126677
35.
35. E. Naiden and S. Zhilyakov, Russ. Phys. J. 40, 869 (1997).
http://dx.doi.org/10.1007/BF02523101
36.
36. L. Li, D. Huo, H. Igawa, and K. Nishimura, J. Alloys Compd. 509, 1796 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.10.043
37.
37. R. Rawat and I. Das, J. Phys.: Condens. Matter 13, L57 (2001).
http://dx.doi.org/10.1088/0953-8984/13/3/102
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4883235
Loading
/content/aip/journal/adva/4/6/10.1063/1.4883235
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4883235
2014-06-10
2016-09-29

Abstract

Magnetocaloric effect is investigated in multiferroic BaSr Zn (FeAl)O ceramic with Y-type hexagonal system. Three magnetic transitions, from alternating longitudinal conical to mixed conical at ∼240 K, to ferrimagnetic at ∼297 K, further to paramagnetic at ∼702 K, are unambiguously determined. Furthermore, obvious MCE is shown, and the maximum values of the magnetic entropy change and relative cooling power are evaluated to be 1.53 JKg−1K−1 and 280 JKg−1 for a field change of 7 T, respectively. In addition, inverse MCE is also observed, which might be associated with the first-order magnetic phase transition between two incommensurate longitudinal conical phases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4883235.html;jsessionid=0178S_W7tgHxM_OFvlJ47Fms.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4883235&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4883235&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4883235'
Right1,Right2,Right3,