Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. H. Do, J. S. Kwak, Y. C. Bae, J. H. Lee, Y. Kim, H. Im, J. P. Hong, Curr. Appl. Phys. 10, e71 (2010).
2. X.-J. Zhu, J. Shang, and R.-W. Li, Front. Mater. Sci. (2012).
3. R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
4. K. Jung, Y. Kim, W. Jung, H. Im, B. Park, J. Hong, J. Lee, J. Park, and J.-K Lee, Appl. Phys. Lett. 97, 233509 (2010).
5. M. K. Yang, K. Jung, Y. Kim, T. K. Ko, H. Im, J.-W. Park, and J.-K. Lee, Jpn. J. Appl. Phys. 49, 111101 (2010).
6. K. Jung, Y. Kim, Y. S. Park, W. Jung, J. Choi, B. Park, H. Kim, W. Kim, J. Hong, and H. Im, J. Appl. Phys. 109, 054511 (2011).
7. A. I. Inamdar, Y. S. Kim, B. U. Jang, H. Im, W. Jung, D.-Y. Kim, H. Kim, Thin Solid Films 520, 5367 (2012).
8. A. I. Inamdar, J. Kim, B. Jang, D. Kim, H. Im. W. Jung, and H. Kim, Jpn. J. Appl. Phys. 51, 104102 (2012).
9. C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, Appl. Phys. Lett. 91, 223510 (2007).
10. Y. H. Do, J. S. Kwak, Y. C. Bae, K. Jung, H. Im, J. P. Hong, Thin Solid Films 518, 4408 (2010).
11. B. U. Jang, A. I. Inamdar, J. Kim, W. Jung, H. Im, H. Kim, J. P. Hong, Thin Solid Films 520, 5451 (2012).
12. A. Ruchi, P. Kumar, and S. Ghosh, IEEE Trans. Electron Dev. 55, 2795 (2008).
13. A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 82, 1215 (2003).
14. H. Akinaga and H. Shima, Proceedings of the IEEE 98, 12 (2010).
15. A. Sawa, Materials today 11, 6 (2008).
16. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotechnol. 3, 429 (2008).
17. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006).
18. D. Panda, C.-Y. Huang, and T.-Y. Tseng, Appl. Phys. Lett. 100, 112901 (2012).
19. D. Panda, T.-Y. Tseng, Thin Solid Films 531, 1 (2013).
20. J. H. Jung, J. H. Kim, T. W. Kim, M. S. Song, Y. H. Kim, S. Jin, Appl. Phys. Lett. 89, 122110 (2006).
21. Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, ACS Nano 4, 6162 (2010).
22. Q. Liu, S. Long, W. Wang, S. Tanachutiwat, Y. Li, Q. Wang, M. Zhang, Z. Huo, J. Chen, and M. Liu, IEEE Electron Device Lett. 31, 1299 (2010).
23. L. Chen, H.-Y. Gou, Q.-Q. Sun, P. Zhou, H.-L. Lu, P.-F. Wang, S.-J. Ding, and D. W. Zhang, IEEE Electron Device Lett. 32, 794 (2011).
24. W.-Y. Chang, K.-J. Cheng, J.-M. Tsai, H.-J. Chen, F. Chen, M.-J. Tsai, and T.-B. Wu, Appl. Phys. Lett. 95, 042104 (2009).
25. D. Panda, A. Dhar, and S. K. Ray, IEEE Trans. Nanotechnol. 11, 51 (2012).
26. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
27. Y. C. Bae, A. R. Lee, J. B. Lee, J. H. Koo, K. C. Kwon, J. G. Park, H. S. Im, and J. P. Hong, Adv. Funct. Mater. 22, 709 (2012).
28. K. Jung, H. Seo, Y. Kim, H. Im, J. P. Hong, J.-W. Park, and J.-K. Lee, Appl. Phys. Lett. 90, 052104 (2007).
29. Y. Sato, K. Kinoshita, M. Aoki, Y. Sugiyama, Appl. Phys. Lett. 90, 033503 (2007).
30. J. Song, A. I. Inamdar, B. U. Jang, K. Jeon, Y. S. Kim, K. Jung, Y. Kim, H. Im, W. Jung, H. Kim, J. P. Hong, Appl. Phys. Express 3, 091101 (2010).
31. Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, and Y. Tokura, IEDM Tech. Dig. 793 (2006).
32. D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Braek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, Appl. Phys. Lett. 88, 202102 (2006).
33. I. Baek, M. Lee, S. Seo, M. Lee, D. Seo, D.-S. Suh, J. Park, S. Park, H. Kim, I. Yoo, U.-I. Chung, and J. Moon, IEDM Tech. Dig. 587 (2004).
34. H. Jung, Y. Kim, K. Jung, H. Im, Y. A. Pashkin, O. Astafiev, Y. Nakamura, H. Lee, Y. Miyamoto, and J. S. Tsai, Phys. Rev. B 80, 125413 (2009).
35. J. H. Zheng, Q. Jiang, and J. S. Lian, Applied Surface Science 257, 5083 (2011).
36. H. Wang, S. Baek, J. Song, J. Lee, and S. Lim, Nanotechnology 19, 7 (2008).

Data & Media loading...


Article metrics loading...



A transparent polymer-based resistive switching device containing InO nanocrystals (NCs) is fabricated, and its nonvolatile memory characteristics are evaluated. Very clear reversible counter-clockwise bipolar-type resistive switching phenomena are observed. Stable retention is demonstrated. An Analysis of the temperature dependence of the bistable resistance states reveals additional features, not reported in previous studies, that the observed resistance switching is due to oxygen ions drift-induced redox reactions at the polymer/InO NCs interface. The RESET and SET switching times (τ and τ), which are defined as pulse widths extrapolated by the steepest slopes in the transition region, are τ ∼ 550 nsec and τ ∼ 900 nsec. The authors propose that microscopic potential modification occurring near the polymer/InO NCs boundaries plays a key role in determining resistive switching properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd