Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proceedings of the National Academy of Sciences of the United States of America 102(30), 10451 (2005).
2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Reviews of Modern Physics 81(1), 109 (2009).
3. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490(7419), 192 (2012).
4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat Photonics 4(9), 611 (2010).
5. Q. L. Bao and K. P. Loh, Acs Nano 6(5), 3677 (2012).
6. Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano, Nat Nano 7(11), 699 (2012).
7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
8. Y. B. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl. Phys. Lett. 86(7) (2005).
9. X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo, and H. J. Dai, Phys. Rev. Lett. 100(20), 206803 (2008).
10. N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102(2), 026807 (2009).
11. Y. C. Lin, C. H. Jin, J. C. Lee, S. F. Jen, K. Suenaga, and P. W. Chiu, Acs Nano 5(3), 2362 (2011).
12. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7(6), 1643 (2007).
13. A. M. Goossens, V. E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, Appl. Phys. Lett. 100(7) (2012).
14. M. Her, R. Beams, and L. Novotny, Phys. Lett. A 377(21–22), 1455 (2013).
15. N. Staley, H. Wang, C. Puls, J. Forster, T. N. Jackson, K. McCarthy, B. Clouser, and Y. Liu, Applied Physics Letters 90(14), 143518 (2007).
16. W. Z. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. J. LeRoy, and C. N. Lau, Nano Research 3(2), 98 (2010).
17. S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, and W. H. Wang, Nano Lett. 12(2), 964 (2012).
18. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97(18), 187401 (2006).
19. A. Venugopal, L. Colombo, and E. M. Vogel, Appl. Phys. Lett. 96(1) (2010).
20. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 97(14) (2010).
21. H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, Acs Nano 5(3), 2051 (2011).
22. F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, Nat Nanotechnol 6(3), 179 (2011).
23. Shaffique Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proceedings of the National Academy of Sciences 104(47), 18392 (2007).
24. T. Ando, J. Phys. Soc. Jpn. 75(7) (2006).
25. E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98(18), 186806 (2007).
26. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat Phys. 4(5), 377 (2008).
27. P. Blake, R. Yang, S. V. Morozov, F. Schedin, L. A. Ponomarenko, A. A. Zhukov, R. R. Nair, I. V. Grigorieva, K. S. Novoselov, and A. K. Geim, Solid State Communications 149(27–28), 1068 (2009).
28. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065), 201 (2005).

Data & Media loading...


Article metrics loading...



Two-dimensional (2D) atomic crystals and their hybrid structures have recently attracted much attention due to their potential applications. The fabrication of metallic contacts or nanostructures on 2D materials is very common and generally achieved by performing electron-beam (e-beam) lithography. However, e-beam lithography is not applicable in certain situations, e.g., cases in which the e-beam resist does not adhere to the substrates or the intrinsic properties of the 2D materials are greatly altered and degraded. Here, we present a residue-free approach for fabricating high-performance graphene devices by patterning a thin film of e-beam resist as a stencil mask. This technique can be generally applied to substrates with varying surface conditions, while causing negligible residues on graphene. The technique also preserves the design flexibility offered by e-beam lithography and therefore allows us to fabricate multi-probe metallic contacts. The graphene field-effect transistors fabricated by this method exhibit smooth surfaces, high mobility, and distinct magnetotransport properties, confirming the advantages and versatility of the presented residue-free technique for the fabrication of devices composed of 2D materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd