1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4884305
1.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proceedings of the National Academy of Sciences of the United States of America 102(30), 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
2.
2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Reviews of Modern Physics 81(1), 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
3.
3. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490(7419), 192 (2012).
http://dx.doi.org/10.1038/nature11458
4.
4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat Photonics 4(9), 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
5.
5. Q. L. Bao and K. P. Loh, Acs Nano 6(5), 3677 (2012).
http://dx.doi.org/10.1021/nn300989g
6.
6. Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano, Nat Nano 7(11), 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
7.
7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
http://dx.doi.org/10.1126/science.1102896
8.
8. Y. B. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl. Phys. Lett. 86(7) (2005).
9.
9. X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo, and H. J. Dai, Phys. Rev. Lett. 100(20), 206803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206803
10.
10. N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102(2), 026807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.026807
11.
11. Y. C. Lin, C. H. Jin, J. C. Lee, S. F. Jen, K. Suenaga, and P. W. Chiu, Acs Nano 5(3), 2362 (2011).
http://dx.doi.org/10.1021/nn200105j
12.
12. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7(6), 1643 (2007).
http://dx.doi.org/10.1021/nl070613a
13.
13. A. M. Goossens, V. E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, Appl. Phys. Lett. 100(7) (2012).
http://dx.doi.org/10.1063/1.3685504
14.
14. M. Her, R. Beams, and L. Novotny, Phys. Lett. A 377(21–22), 1455 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.04.015
15.
15. N. Staley, H. Wang, C. Puls, J. Forster, T. N. Jackson, K. McCarthy, B. Clouser, and Y. Liu, Applied Physics Letters 90(14), 143518 (2007).
http://dx.doi.org/10.1063/1.2719607
16.
16. W. Z. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. J. LeRoy, and C. N. Lau, Nano Research 3(2), 98 (2010).
http://dx.doi.org/10.1007/s12274-010-1013-5
17.
17. S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, and W. H. Wang, Nano Lett. 12(2), 964 (2012).
http://dx.doi.org/10.1021/nl204036d
18.
18. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97(18), 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
19.
19. A. Venugopal, L. Colombo, and E. M. Vogel, Appl. Phys. Lett. 96(1) (2010).
http://dx.doi.org/10.1063/1.3290248
20.
20. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 97(14) (2010).
http://dx.doi.org/10.1063/1.3491804
21.
21. H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, Acs Nano 5(3), 2051 (2011).
http://dx.doi.org/10.1021/nn103221v
22.
22. F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, Nat Nanotechnol 6(3), 179 (2011).
http://dx.doi.org/10.1038/nnano.2011.6
23.
23. Shaffique Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proceedings of the National Academy of Sciences 104(47), 18392 (2007).
http://dx.doi.org/10.1073/pnas.0704772104
24.
24. T. Ando, J. Phys. Soc. Jpn. 75(7) (2006).
25.
25. E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98(18), 186806 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.186806
26.
26. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat Phys. 4(5), 377 (2008).
http://dx.doi.org/10.1038/nphys935
27.
27. P. Blake, R. Yang, S. V. Morozov, F. Schedin, L. A. Ponomarenko, A. A. Zhukov, R. R. Nair, I. V. Grigorieva, K. S. Novoselov, and A. K. Geim, Solid State Communications 149(27–28), 1068 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.02.039
28.
28. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065), 201 (2005).
http://dx.doi.org/10.1038/nature04235
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884305
Loading
/content/aip/journal/adva/4/6/10.1063/1.4884305
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4884305
2014-06-16
2014-12-25

Abstract

Two-dimensional (2D) atomic crystals and their hybrid structures have recently attracted much attention due to their potential applications. The fabrication of metallic contacts or nanostructures on 2D materials is very common and generally achieved by performing electron-beam (e-beam) lithography. However, e-beam lithography is not applicable in certain situations, e.g., cases in which the e-beam resist does not adhere to the substrates or the intrinsic properties of the 2D materials are greatly altered and degraded. Here, we present a residue-free approach for fabricating high-performance graphene devices by patterning a thin film of e-beam resist as a stencil mask. This technique can be generally applied to substrates with varying surface conditions, while causing negligible residues on graphene. The technique also preserves the design flexibility offered by e-beam lithography and therefore allows us to fabricate multi-probe metallic contacts. The graphene field-effect transistors fabricated by this method exhibit smooth surfaces, high mobility, and distinct magnetotransport properties, confirming the advantages and versatility of the presented residue-free technique for the fabrication of devices composed of 2D materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4884305.html;jsessionid=ew4cx5gunrx5.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4884305&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884305
10.1063/1.4884305
SEARCH_EXPAND_ITEM