1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4884637
1.
1. E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The Mathematics of the Bose Gas and its Condensation (Springer, Basel, 2005).
2.
2. J. T. Mendonça and H. Terças, Physics of Ultra-Cold Matter (Springer, New York, 2013).
3.
3. K. Levin, A. Fetter, and D. Stamper-Kurn, Ultracold Bosonic and Fermionic Gases (Elsevier, Oxford, 2012).
4.
4. W. Zwerger, The BCS-BEC Crossover and the Unitary Fermi Gases (Springer, Berlin, 2012).
5.
5. A. X. Zhang and J. K. Xue, Chin. Phys. Lett. 25, 39 (2008).
http://dx.doi.org/10.1088/0256-307X/25/1/011
6.
6. S. Zhang, J. M. Ba, Y. N. Sun, and L. Dong, Z. Naturforsch. 64a, 691696 (2009).
7.
7. H. Liu, D. H. He, S. Y. Lou, and X. T. He, Chin. Phys. Lett. 26, 120308 (2009).
http://dx.doi.org/10.1088/0256-307X/26/12/120308
8.
8. J. X. Fei and C. L. Zheng, Chin. J. Phys. 51, 200 (2013).
9.
9. C. Trallero-Ginera, J. C. Drake-Pereza, V. Lopez-Richardb, and J. L. Birmanc, Physica D 237, 2342 (2008).
http://dx.doi.org/10.1016/j.physd.2008.02.017
10.
10. R. Atre, P. K. Panigrahi, and G. S. Agarwal, Phys. Rev. E 73, 056611 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056611
11.
11. W. Malfliet, Am. J. Phys. 60, 650 (1992).
http://dx.doi.org/10.1119/1.17120
12.
12. A.-M. Wazwaz, Appl. Math. Comput. 188, 1467 (2007).
http://dx.doi.org/10.1016/j.amc.2006.11.013
13.
13. M. Wang and X. Li, Chaos Soliton. Fract. 24, 1257 (2005).
http://dx.doi.org/10.1016/j.chaos.2004.09.044
14.
14. M. A. Abdou, Chaos Soliton. Fract. 31, 95 (2007).
http://dx.doi.org/10.1016/j.chaos.2005.09.030
15.
15. J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).
http://dx.doi.org/10.1063/1.525721
16.
16. S. Liu, Z. Fu, S. Liu, and Q. Zhao, Phys. Lett. A 289, 69 (2001).
http://dx.doi.org/10.1016/S0375-9601(01)00580-1
17.
17. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.1192
18.
18. N. Nirmala and M. Vedan, J. Math. Phys. 27, 2644 (1984).
http://dx.doi.org/10.1063/1.527283
19.
19. V. A. Matveev and M. A. Salle, Darboux Transformation and Solitons (Springer, Berlin, 1991).
20.
20. J. H. He, Appl. Math. Comput. 114, 115 (2000).
http://dx.doi.org/10.1016/S0096-3003(99)00104-6
21.
21. M. Wang, Y. Zhou, and Z. Li, Phys. Lett. A 216, 67 (1996).
http://dx.doi.org/10.1016/0375-9601(96)00283-6
22.
22. A. Yildirim and Z. Pinar, Comput. Math. Appl. 60, 1873 (2010).
http://dx.doi.org/10.1016/j.camwa.2010.07.020
23.
23. H. Naher and F. A. Abdullah, Appl. Math. Sci. 6, 5495 (2012).
24.
24. M. Wang, X. Li, and J. Zhang, Phys. Lett. A 372, 417 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.07.051
25.
25. H. Naher and F. A. Abdullah, J. Egypt. Math. Soc. (2014) (in press).
26.
26. İ. Aslan, Appl. Math. Comput. 215, 857 (2009).
http://dx.doi.org/10.1016/j.amc.2009.05.038
27.
27. H. Naher and F. A. Abdullah, Appl. Math. 3, 1144 (2012).
http://dx.doi.org/10.4236/am.2012.310168
28.
28. M. A. Akbar, N. Hj. Mohd. Ali, and E. M. E. Zayed, Commun. Theor. Phys. 57, 173 (2012).
http://dx.doi.org/10.1088/0253-6102/57/2/01
29.
29. H. Naher and F. A. Abdullah, J. Comput. Anal. Appl. 16, 220 (2014).
30.
30. Y.-L. Zhao, Y.-P. Liu, and Z.-B. Li, Chin. Phys. B 19, 030306 (2010).
http://dx.doi.org/10.1088/1674-1056/19/3/030306
31.
31. H. Naher, F. A. Abdullah, and A. Bekir, AIP Adv. 2, 042163 (2012).
http://dx.doi.org/10.1063/1.4769751
32.
32. H. Naher and F. A. Abdullah, AIP Adv. 3, 032116 (2013).
http://dx.doi.org/10.1063/1.4794947
33.
33. Y. Zhou, M. L. Wang, and Y. M. Wang, Phys. Lett. A 308, 31 (2003).
http://dx.doi.org/10.1016/S0375-9601(02)01775-9
34.
34. H. Heiselberg, Phys. Rev. Lett. 93, 040402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.040402
35.
35. J. Yin, Y. Ma, and G. Huang, Phys. Rev. A 74, 013609 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.013609
36.
36. Y. Zhou, W. Wen, and G. Huang, Phys. Rev. B 77, 104527 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104527
37.
37. Y. E. Kim and A. L. Zubarev, Phys. Rev. A 70, 033612 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.033612
38.
38. T. K. Ghosh and K. Machida, Phys. Rev. A 73, 013613 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.013613
39.
39. H. Hu, A. Minguzzi, X. J. Liu, and M. P. Tosi, Phys. Rev. Lett. 93, 190403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.190403
40.
40. Y.-X. Xu and W.-S. Duan, Chin. Phys. Lett. 28, 125203 (2011).
http://dx.doi.org/10.1088/0256-307X/28/12/125203
41.
41. Y. Zhou, Y. Wang, W.-C. Luo, and X.-D. Ma, Commun. Theor. Phys. 57, 188 (2012).
http://dx.doi.org/10.1088/0253-6102/57/2/04
42.
42. L. Salasnich, P. Comaron, M. Zambon, and F. Toigo, Phys. Rev. A 88, 033610 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.033610
43.
43. Y. Zhou, Q.-C. Zhou, and X.-D. Ma, Acta Phys. Sin. 62, 140301 (2013).
44.
44. T. G. Carlos, C. Rolci, and C. H. L. Timothy, Eur. Phys. J. D 67, 143 (2013).
http://dx.doi.org/10.1140/epjd/e2013-40163-9
45.
45. A. Muryshev, G. V. Shlyapnikov, W. Ertmer, K. Sengstock, and M. Lewenstein, Phys. Rev. Lett. 89, 110401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.110401
46.
46. G. Theocharis, Z. Rapti, P. G. Kevrekidis, D. J. Frantzeskakis, and V. V. Konotop, Phys. Rev. A 67, 063610 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.063610
47.
47. C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation (Springer, New York, 1999).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884637
Loading
/content/aip/journal/adva/4/6/10.1063/1.4884637
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4884637
2014-06-18
2014-12-21

Abstract

We give a more generalized treatment of the 1D generalized Gross-Pitaevskii equation (GGPE) with variable term coefficients. External harmonic trapping potential is fully considered and the nonlinear interaction term is of arbitrary polytropic index of superfluid wave function. We also eliminate the interdependence between variable coefficients of the equation terms avoiding the restrictions that occur in some other works. The exact soliton solutions of the GGPE are obtained through the delicate combined utilization of modified lens-type transformation and -expansion method with dominant features like soliton type properties highlighted.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4884637.html;jsessionid=6h6lk2b5isgc6.x-aip-live-06?itemId=/content/aip/journal/adva/4/6/10.1063/1.4884637&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884637
10.1063/1.4884637
SEARCH_EXPAND_ITEM