1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhanced half-metallicity in the zigzag graphene nanoribbons by adsorption of the zigzag hydrogen fluoride molecular chains
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4884695
1.
1. R. A. de Groot, F. M. Mueller, P. G. v. Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
2.
2. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature (London, U.K.) 392, 794 (1998).
http://dx.doi.org/10.1038/33883
3.
3. K. Miyajima, A. Nakajima, S. Yabushita, M. B. Knickelbein, and K. Kaya, J. Am. Chem. Soc. 126, 13202 (2004).
http://dx.doi.org/10.1021/ja046151+
4.
4. J. Wang, P. H. Acioli, and J. Jellinek, J. Am. Chem. Soc. 127, 2812 (2005).
http://dx.doi.org/10.1021/ja043807q
5.
5. Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature 444, 347 (2006).
http://dx.doi.org/10.1038/nature05180
6.
6. Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
7.
7. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
8.
8. K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8271
9.
9. E.-J. Kan, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 130, 4224 (2008).
http://dx.doi.org/10.1021/ja710407t
10.
10. Y.-L. Lee, S. Kim, C. Park, J. Ihm, and Y. W. Son, ACS Nano 3, 1345 (2010).
http://dx.doi.org/10.1021/nn9019064
11.
11. S. Dutta, A. K. Manna, and S. K. Pati, Phys. Rev. Lett. 102, 096601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.096601
12.
12. X. H. Zheng, X. L. Wang, T. A. Abtew, and Z. Zeng, J. Phys. Chem. C 114, 4190 (2010).
http://dx.doi.org/10.1021/jp911203n
13.
13. J. M. Pruneda, Phys. Rev. B 81, 161409R (2010).
http://dx.doi.org/10.1103/PhysRevB.81.161409
14.
14. O. Hod, V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett. 7, 2295 (2007).
http://dx.doi.org/10.1021/nl0708922
15.
15. M. H. Wu, X. J. Wu, Y. Gao, and X. C. Zeng, Appl. Phys. Lett. 94, 223111 (2009).
http://dx.doi.org/10.1063/1.3143611
16.
16. Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, ACS Nano 3, 1952 (2009).
http://dx.doi.org/10.1021/nn9003428
17.
17. E.-J. Kan, X. J. Wu, Z. Y. Li, X. C. Zeng, J. L. Yang, and J. G. Hou, J. Chem. Phys. 129, 084712 (2008).
http://dx.doi.org/10.1063/1.2971187
18.
18. M. H. Wu, X. J. Wu, and X. C. Zeng, J. Phys. Chem. C, 114, 3937 (2010).
http://dx.doi.org/10.1021/jp100027w
19.
19. N. Gorjizadeh, Amir A. Farajian, K. Esfarjani, and Y. Kawazoe, Phys. Rev. B 78, 155427 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.155427
20.
20. J. Berashevich and T. Chakraborty, Phys. Rev. B 80, 033404 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033404
21.
21. M. W. Johnson, E. Sándor, amd E. Arzi, Acta Cryst. B31, 1998 (1975).
http://dx.doi.org/10.1107/S0567740875006711
22.
22. Sylvia E. Mclain, C. J. Benmore, J. E. Siewenie, J. Urquidi, and J. F. Turner, Angew. Chem. Int. Ed. 43, 1952 (2004).
http://dx.doi.org/10.1002/anie.200353289
23.
23. M. Kreitmeir, H. Bertagnolli, J. J. Mortensen, and M. Parrinello, J. Chem. Phys. 118, 3639 (2003).
http://dx.doi.org/10.1063/1.1539045
24.
24. A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Mueller, S. Huefner, S. Gsell, M. Fischer, M. Schreck, J. Osterwalder, T. Greber, S. Berner, N. R. Champness, and P. H. Beton, Angew. Chem. Int. Ed. 49, 1794 (2010).
http://dx.doi.org/10.1002/anie.200905503
25.
25. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
26.
26. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
27.
27. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
28.
28. D. R. Hamann, Phys. Rev. B 55, R10157 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10157
29.
29. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
30. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
31.
31. T. Kurita, S. Okada, and A. Oshiyama, Phys. Rev. B 75, 205424 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205424
32.
32. A. Maiti, J. Andzelm, N. Tanpipat, and P. von Allmen, Phys. Rev. Lett. 87, 155502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.155502
33.
33. F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.186101
34.
34. C. Swalina, Q. Wang, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 2206 (2007).
http://dx.doi.org/10.1021/jp0682661
35.
35. C. Swalina and S. Hammes-Schiffer, J. Phys. Chem. A 109, 10410 (2005).
http://dx.doi.org/10.1021/jp053552i
36.
36. S. Cho, Y. F. Chen, and M. S. Fuhrer, Appl. Phys. Lett. 91, 123105 (2007).
http://dx.doi.org/10.1063/1.2784934
37.
37. D. Gunlycke, D. A. Areshkin, J. W. Li, J. W. Mintmire, and C. T. White, Nano Lett. 7, 3608 (2007).
http://dx.doi.org/10.1021/nl0717917
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884695
Loading
/content/aip/journal/adva/4/6/10.1063/1.4884695
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4884695
2014-06-18
2014-09-30

Abstract

A comprehensive theoretical study of the half-metallicity in the zigzag graphene nanoribbons (ZGNRs) by adsorption of the zigzag hydrogen fluoride chains was presented. The ZGNR by adsorption of the hydrogen fluoride chains could be half-metallic when a critical length of the hydrogen fluoride chain is achieved on the ZGNR at low temperature. It was found that the strong dipole moments of the hydrogen fluoride chains act as the constant electric field. Our results suggest a huge possibility in spintronics device applications for achieving half-metallicity in the ZGNRs without the excessively high external electric fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4884695.html;jsessionid=3rp2kg64wxgu.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4884695&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced half-metallicity in the zigzag graphene nanoribbons by adsorption of the zigzag hydrogen fluoride molecular chains
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884695
10.1063/1.4884695
SEARCH_EXPAND_ITEM