1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Magnetoimpedance effect of the Ni80Fe20/Cu composite wires: The influence of DC current imposed on the Cu base
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/6/10.1063/1.4884696
1.
1. K. Mohri, K. Kawashima, K. Kawashima, H. Yoshida, and L. V. Panina, IEEE Trans. Magn. 28, 3150 (1992).
http://dx.doi.org/10.1109/20.179741
2.
2. L. V. Panina, K. Mohri, K. Bushida, J. Appl. Phys. 76, 6198 (1994).
http://dx.doi.org/10.1063/1.358310
3.
3. M. Coisson, P. Tiberto, F. Vinai, P. V. Tyagi, S. S. Modak, and S. N. Kane, J. Magn. Magn. Mater. 320, 510 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.07.010
4.
4. L. V. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994).
http://dx.doi.org/10.1063/1.112104
5.
5. M. H. Phan, H. X. Peng, M. T. Tung, N. V. Dung, and N. H. Nghi, J. Magn. Magn. Mater. 316, 244 (2007).
http://dx.doi.org/10.1016/j.jmmm.2007.02.111
6.
6. T. Uchiyama, K. Mohri, Y. Honkura, and L. V. Panina, IEEE Trans. Magn. 48, 3833 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2198627
7.
7. T. Uchiyama, S. Nakayama, K. Mohri, and K. Bushida, Phys. Status Solida, A 206, 639 (2009).
http://dx.doi.org/10.1002/pssa.200881251
8.
8. L. D. Landau and E. M. Liftshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamom Press, Oxford, 1984).
9.
9. L. V. Panina, K. Mohri, T. Uchiyama, and M. Noda, IEEE Trans. Magn. 31, 1249 (1995).
http://dx.doi.org/10.1109/20.364815
10.
10. Y. Yoshizawa and K. Yamauchi, IEEE Trans. Magn. 25, 3324 (1989).
http://dx.doi.org/10.1109/20.42291
11.
11. G. V. Kurlyandskaya, J. M. Beneytez, M. Vazquez, J. P. Sinnecke, V. A. Lukshina, and A. P. Potapov, J. Appl. Phys. 83, 6581 (1998).
http://dx.doi.org/10.1063/1.367925
12.
12. D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, Z. J. Zhao, “Magnetoimpedance effect of composite wires prepared by chemical plating under DC current,” to be published in Nano-Micro Letters. 6 (2014)
13.
13. John H. Lienhard IV and John H. Lienhard V, A Heat Transfer Textbook, 3rd ed. (Phlogiston Press, 2008).
14.
14. Carmen-Gabriela Stefanita, Magnetism: Basics and Applications (Springer 2012).
15.
15. L. P. Liu, Z. J. Zhao, C. X. Huang, Z. M. Wu, and X. L. Yang, Acta Physica Sinica 55, 2014 (2006).
16.
16. A. Talaat, V. Zhukova, M. Ipatov, J. M. Blanco, L. Gonzalez-Legarreta, B. Hernando, J. J. del Val, J. Gonzalez, and A. Zhukov, J. Appl. Phys. 115, 17A313 (2014).
http://dx.doi.org/10.1063/1.4863484
17.
17. G. V. Kurlyandskaya, H. Yakabchuk, E. Kisker, N. G. Bebenin, H. Garcia-Miquel, M. Vazquez, and V. O. Vas'kovskiy, J. Appl. Phys. 90, 6280 (2001).
http://dx.doi.org/10.1063/1.1418423
18.
18. M. H. Phan and H. X. Peng, Prog. Mater. Sci. 53, 323 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2007.05.003
19.
19. A. V. Svalov, E. Fernandez, A. Garcia-Arribas, J. Alonso, M. L. Fdez-Gubieda, and G. V. Kurlyandskaya, Appl. Phys. Lett. 100, 162410 (2012).
http://dx.doi.org/10.1063/1.4704984
20.
20. S. Xiao, Y. Liu, Y. Dai, L. Zhang, S. Zhou, and G. Liu, J. Appl. Phys. 85, 4127 (1999).
http://dx.doi.org/10.1063/1.370321
21.
21. X. P. Li, Z. J. Zhao, C. Chua, H. L. Seet, and L. Lu, J. Appl. Phys. 94, 7626 (2003).
http://dx.doi.org/10.1063/1.1628828
22.
22. X. Wang, W. Yuan, Z. Zhao, X. Li, J. Ruan, and X. Yang, IEEE Trans. Magn. 41, 113 (2005).
http://dx.doi.org/10.1109/TMAG.2004.832479
23.
23. R. L. Wang, X. Li, X. H. Kong, Y. X. Guo, J. Z. Ruan, and Z. J. Zhao, Nano-Micro Lett. 5(2), 140144 (2013).
http://dx.doi.org/10.1049/mnl.2010.0012
24.
24. Q. Zhang, D. L. Chen, X. Li, P. X. Yang, J. H. Chu, and Z. J. Zhao, Nano-Micro Lett. 5(1), 1317 (2013).
http://dx.doi.org/10.5101/nml.v5i4.p242-246
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884696
Loading
/content/aip/journal/adva/4/6/10.1063/1.4884696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4884696
2014-06-18
2014-09-20

Abstract

In this paper, the copper composite wires of 75 μm in diameter with a sputtered layer of Ni Fe permalloy were prepared, with a DC current applied to the basal Cu terminals during the fabrication process. The influence of the DC current on the magnetic configuration and Magneto-Impedance (MI) effect was studied. The results indicate that both the current amplitude and actuation duration have significant effect on the magnetic properties of the Ni Fe layer. With appropriate current applied, the induced magnetic field leads to a circumferential magnetic domain structure and reduces significantly the equivalent anisotropy field of Ni Fe layer. Then, the GMI ratio of the composite wires was significantly increased. A maximum GMI of 194.8% can be reached when the current was fixed at 100 mA and the Ni Fe thickness is 780 nm. If the Ni Fe thickness is above 780 nm, the coercivity of the coating layer increases while the GMI ratio of the composite wire reduces, since the magnetic anisotropy of the Ni Fe layer varies from circumferential to longitudinal. The results were explained combining the thermal and magnetic effects of current.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4884696.html;jsessionid=ls2a2g6ad9ai.x-aip-live-02?itemId=/content/aip/journal/adva/4/6/10.1063/1.4884696&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetoimpedance effect of the Ni80Fe20/Cu composite wires: The influence of DC current imposed on the Cu base
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4884696
10.1063/1.4884696
SEARCH_EXPAND_ITEM