Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4885466
1.
1. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials properties, 3rd ed. (Springer, Berlin, Heidelberg and New York, 2005).
2.
2. D. L. Dreifus, B. P. Sneed, J. Ren, J. W. Cook Jr., J. F. Schetzina, and R. M. Kolbas, Appl. Phys. Lett. 57, 1663 (1990).
http://dx.doi.org/10.1063/1.104079
3.
3. T. Yasuda, K. Kimura, S. Miwa, L. H. Kuo, C. G. Jin, K. Tanaka, and T. Yao, Phys. Rev. Lett. 77, 326 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.326
4.
4. X. W. Zhang, X. J. Zhang, L. Wang, Y. M. Wu, Y. Wang, P. Gao, Y. Y. Han, and J. Jie, Nanotechnology 24, 395201 (2013).
http://dx.doi.org/10.1088/0957-4484/24/39/395201
5.
5. Y. Y. Lai, Y. P. Lan, and T. C. Lu, Light: Sci. Appl. 2, e76 (2013).
http://dx.doi.org/10.1038/lsa.2013.32
6.
6. C.-Y. Yeh, S.-H. Wei, and A. Zunger, Phys. Rev.B 50, 2715 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.2715
7.
7. B. Hennion, F. Moussa, G. Pepy, and K. Kunc, Phys. Lett. A 36, 376 (1971).
http://dx.doi.org/10.1016/0375-9601(71)90267-2
8.
8. F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B 5, 580 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.580
9.
9. A. Dal Corso, B. Stefano, and R. Resta, Phys. Rev.B 47, 3588 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.3588
10.
10. A. V. Postnikov, O. Pagès, and J. Hugel, Phys. Rev. B 71, 115206 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115206
11.
11. R. K. Kremer, M. Cardona, R. Lauck, G. Siegle, and A. H. Romero, Phys. Rev. B 85, 035208 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035208
12.
12. Q. Su, L. J. Li, S. Y. Li, and H. P. Zhao, Mater. Lett 92, 338 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.10.112
13.
13. X. J. Zhang, D. D. Wang, M. Beres, L. Liu, Z. X. Ma, P. Y. Yu, and S. S. Mao, Appl. Phys. Lett. 103, 082111 (2013).
http://dx.doi.org/10.1063/1.4819271
14.
14. W. Lin, S. P. Guo, M. C. Tamargo, I. Kuskovsky, C. Tian, and G. F. Neumark, Appl. Phys. Lett. 76, 2205 (2000).
http://dx.doi.org/10.1063/1.126297
15.
15. S.-I. Nakashima, A. Fujii, K. Mizoguchi, A. Mitsuishi, and K. Yoneda, Jpn. J. Appl. Phys. 27, 1327 (1988).
http://dx.doi.org/10.1143/JJAP.27.1327
16.
16. M. Grün, C. Klingshirn, A. Rosenauer, J. Zweck, and W. Gebhardt, Appl. Phys. Lett. 63, 2947 (1993).
http://dx.doi.org/10.1063/1.110281
17.
17. J. F. Justo, M. De Koning, W. Cai, and V. V. Bulatov, Phys. Rev. Lett. 84, 2172 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2172
18.
18. L. Sugiura, J. Appl. Phys. 81, 1633 (1997).
http://dx.doi.org/10.1063/1.364018
19.
19. S. Suzuki, Y. Kaifuchi, H. Kumada, Y. Ishitani, and A. Yoshikawa, phys. stat. sol. (b) 241, 475 (2004).
http://dx.doi.org/10.1002/pssb.200304155
20.
20. J. Hu, Y. Bando, J. H. Zhan, Z. W. Liu, D. Golberg, and S. P. Ringer, Adv.Mater. 17, 975 (2005).
http://dx.doi.org/10.1002/adma.200401654
21.
21. C. X. Shan, Z. Liu, X. T. Zhang, C. C. Wong, and S. K. Hark, Nanotechnology 17, 5561 (2006).
http://dx.doi.org/10.1088/0957-4484/17/22/006
22.
22. H. T. Wang, T. Tian, S. C. Yan, N. P. Huang, and Z. D. Xiao, J. Cryst. Growth 311, 3787 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.05.022
23.
23. X. J. Zhang, D. D. Wang, M. Beres, L. Liu, Z. X. Ma, P. Y. Yu, and S. S. Mao, Appl. Phys. Lett. 103, 082111 (2013).
http://dx.doi.org/10.1063/1.4819271
24.
24. S. Saib, M. Ajmal Khan, and N. Bouarissa, Physica B 407, 3570 (2012).
http://dx.doi.org/10.1016/j.physb.2012.05.027
25.
25. L. Liu, K. L. Teo, Z. X. Shen, J. S. Sun, E. H. Ong, A. V. Kolobov, and Y. Maeda, Phys. Rev. B 69, 125333 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.125333
26.
26. B. Stefano, S. De Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
27.
27. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
28.
28. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
29.
29. G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
30.
30. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
31.
31. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
32.
32. R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev.B 1, 910 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.910
33.
33. A. K. Arora, E.-K. Suh, U. Debska, and A. K. Ramdas, Phys. Rev.B 37, 2927 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2927
34.
34. A. R. Goñi, H. Siegle, K. Syassen, C. Thomsen, and J.-M. Wagner, Phys. Rev. B 64, 035205 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035205
35.
35. X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.10355
36.
36. R. G. Greene, H. Luo, and A. L. Ruoff, J. Phys. Chem. Solids 56, 521 (1995).
http://dx.doi.org/10.1016/0022-3697(95)80020-4
37.
37. T. Basak, M. N. Rao, M. K. Gupta, and S. L. Chaplot, J. Phys.: Condens. Matter 24, 115401 (2012).
http://dx.doi.org/10.1088/0953-8984/24/11/115401
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4885466
Loading
/content/aip/journal/adva/4/6/10.1063/1.4885466
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4885466
2014-06-24
2016-09-29

Abstract

The lattice dynamical properties of ZnSe and ZnSe with substitutional N incorporation(ZnSe:N) are investigated in both the zinc-blend(ZB) and wurtzite(WZ) structures using first-principles calculations. The optical phonon modes of ZB-ZnSe at the Γ-point locate at 250 cm−1 for LO and 213 cm−1 for TO. The characteristic phonon modes at about 50 cm−1 and the and another phonon modes around 200 cm−1 of WZ-ZnSe are suggested to be the fingerprint for distinguishing the two polytypes of ZnSe. For substitutional N incorporated ZnSe, the N incorporation introduces three new high energy modes above 500 cm−1, and the splitting of them is much larger in the WZ phase than that in ZB phase. The strain dependence of phonon frequency which could be useful for corresponding spectroscopic strain characterization are also studied. The simple linear dependence is determined for ZB-ZnSe, while the situation for WZ-ZnSe looks more complicated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4885466.html;jsessionid=FZggLl-T2-csWHBg5jqkXdt4.x-aip-live-06?itemId=/content/aip/journal/adva/4/6/10.1063/1.4885466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4885466&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4885466'
Right1,Right2,Right3,