Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130, 3296 (2008).
2. G. R. Stewart, “Superconductivity in iron compounds,” Rev. Mod. Phys. 83, 1589 (2011).
3. E. Dagotto, “Colloquium: The unexpected properties of alkali metal iron selenide superconductors,” Rev. Mod. Phys. 85, 849 (2013).
4. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α –FeSe,” Proc. Natl. Acad. Sci. 101, 14262 (2008).
5. E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, and R. Khasanov, “Synthesis, crystal structure, and chemical stability of the superconductor FeSe1−x,” Phys. Rev. B 80, 024517 (2009).
6. S. B. Zhang, X. D. Zhu, H. C. Lei, G. Li, B. S. Wang, L. J. Li, X. B. Zhu, Z. R. Yang, W. H. Song, J. M. Dai, and Y. P. Sun, “Superconductivity of FeSe0.89 crystal with hexagonal and tetragonal structures,” Supercond. Sci. Technol. 22, 075016 (2009).
7. T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, “Why does undoped FeSe become a high-Tc superconductor under Pressure?,” Phys. Rev. Lett. 102, 177005 (2009).
8. S. Margadonna, Y. Takabayashi, M. T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E. Suarde, and K. Prassides, “Crystal structure of the new FeSe1−x superconductor,” Chem. Commun., issue 43, 5607 (2008).
9. M. J. Pitcher, T. Lancaster, J. D. Wright, I. Franke, A. J. Steele, P. J. Baker, F. L. Pratt, W. Trevelyan-Thomas, D. R. Parker, S. J. Blundell, and S. J. Clarke, “Compositional control of the superconducting properties of LiFeAs,” J. Am. Chem. Soc. 132, 10467 (2010).
10. D. Mandrus, A. S. Sefat, M. A. McGuire, and B. C. Sales, “Materials chemistry of BaFe2As2: a model platform for unconventional superconductivity,” Chem. Mater. 22, 715 (2010).
11. T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, “Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe,” Phys. Rev. B 79, 014522 (2009).
12. T. P. Ying, X. L. Chen, G. Wang, S. F. Jin, T. T. Zhou, X. F. Lai, H. Zhang, and W. Y. Wang, “Observation of superconductivity at 30 K ∼ 46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu),” Sci. Rep. 2, 426 (2012).
13. Jiangang Guo, Shifeng Jin, Gang Wang, Shunchong Wang, Kaixing Zhu, Tingting Zhou, Meng He, and Xiaolong Chen, "Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0),” Phys. Rev. B 82, 180520(R) (2010).
14. A. K. Miziopa, E. V. Pomjakushina, V. Y. Pomjakushin, F. von Rohr, A. Schilling, and K. Conder, “Synthesis of new alkali metal-organic solvent intercalated iron selenide superconductor with Tc ∼ 45 K,” J. Phys: Condens. Matter 24, 382202 (2012).
15. M. B. Lucas, D. G. Free, S. J. Sedlmaier, J. D. Wright, S. J. Cassidy, Y. Hara, A. J. Corkett, T. Lancaster, P. J. Baker, S. J. Blundell, and S. J. Clarke, “Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer,” Nature Mater. 12,15 (2013).
16. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, “Superconductivity at 27 K in tetragonal FeSe under high pressure,” Appl. Phys. Lett. 93, 152505 (2008).
17. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, “Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K),” Phys. Rev. B 80, 064506 (2009).
18. S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, “Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure,” Nature Mater. 8, 630 (2009).
19. T. K. Chen, C. C. Chang, H. H. Chang, A. H. Fang, C. H. Wang, W. H. Chao, C. M. Tseng, Y. C. Lee, Y. R. Wu, M. H. Wen, H. Y. Tang, F. R. Chen, M. J. Wang, M. K. Wu, and D. V. Dyck, “Fe-vacancy order and superconductivity in tetragonal β-Fe1-xSe,” Proc. Natl. Acad. Sci. 111, 63 (2014).
20. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, “Temperature and purity dependence of superconducting critical field, Hc2 III. Electron-spin and spin-orbit effects,” Phys. Rev. 147, 295 (1966).
21. K. Miyoshi, K. Morishita, E. Mutou, M. Kondo, O. Seida, K. Fujiwara, J. Takeuchi, and S. Nishigori, “Enhanced Superconductivity on the Tetragonal Lattice in FeSe under Hydrostatic Pressure,” J. Phys. Soc. Jpn. 83, 013702 (2014).

Data & Media loading...


Article metrics loading...



The discoveries of iron-based superconductors with relatively high transition temperature are under intense experimental and theoretical investigation. Here we present magnetotransport measurements on FeSe superconductor under hydrostatic pressure. We show that in Fe-deficient tetragonal FeSe binary compound, the onset of superconducting transition is almost doubled under 1.98 GPa pressure and the estimated upper critical field of 26.7 Tesla is increased to 47.5 Tesla.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd