Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4885555
1.
1. J. H. Ferziger and M. Perić, Computational Methods for fluid Dynamics,” 3rd ed. (Springer, 2002), pp. 3537.
2.
2. J. Peiró and S. Sherwin, Finite Difference, Finite Element, and Finite Volume Method, Handbook of Materials Modeling, Volume I, Methods and Models, (Springer, Printed in the Netherlands, 2005), pp. 132.
3.
3. H. Bandringa, “Immersed boundary method,” Master Thesis in Applied Mathematics (University of Groningen, The Netherlands, 2010).
4.
4. C. S. Peskin, “The fluid dynamics of heart valves, experimental, theoretical and computational methods,” Annu. Rev. Fluid Mech. 14, 235259 (1981).
http://dx.doi.org/10.1146/annurev.fl.14.010182.001315
5.
5. E. M. Saiki and S. Biringen, “Numerical simulation of a cylinder in uniform flow, application of a virtual boundary method,” J. Comput. Phys. 123, 450465 (1996).
http://dx.doi.org/10.1006/jcph.1996.0036
6.
6. R. P. Beyer and R. J. Leveque, “Analysis of a one dimensional model for the immersed boundary method,” IAM J. Numer. Anal. 29, 332364 (1992).
http://dx.doi.org/10.1137/0729022
7.
7. J. Mohd-Yusof, “Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries,” Center for Turbulence Research Annual Research Briefs 161(1), 317327 (1997).
8.
8. E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined immersed-boundary finite-dierence methods for three-dimensional complex flow simulations,” Journal of Computational Physics 161(1), 3560 (2000).
http://dx.doi.org/10.1006/jcph.2000.6484
9.
9. S. Kang, G. Iaccarino, and P. Moin, “Accurate immersed-boundary reconstructions for viscous flow simulations,” AIAA Journal, 47(7), 17501760 (2009).
http://dx.doi.org/10.2514/1.42187
10.
10. Y. H. Tseng and J. H. Ferziger, “A ghost-cell immersed boundary method for flow in complex geometry,” Journal of Computational Physics, 192(2), 593623 (2003).
http://dx.doi.org/10.1016/j.jcp.2003.07.024
11.
11. T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, “An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries,” Journal of Computational Physics, 156(2), 209240 (1999).
http://dx.doi.org/10.1006/jcph.1999.6356
12.
12. H. Johansen and P. Colella, “A cartesian grid embedded boundary method for Poisson's equation on irregular domains,” Journal of Computational Physics, 147, 6085 (1998).
http://dx.doi.org/10.1006/jcph.1998.5965
13.
13. H. S. Udaykumar, R. Mittal, and W. Shyy, “Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids,” Journal of Computational Physics, 153(2), 535574 (1999).
http://dx.doi.org/10.1006/jcph.1999.6294
14.
14. R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke, “A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries,” Journal of Computational Physics, 227(10), 48254852 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.01.028
15.
15. R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech., 37, 239261 (2005).
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
16.
16. S. Osher and R. P. Fedkiw, Applied Mathematical Science 153 Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag New York, Inc., 2003).
17.
17. R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method),” Journal of Computational Physics, 152(2), 457492 (1999).
http://dx.doi.org/10.1006/jcph.1999.6236
18.
18. F. Gibou, R. P. Fedkiw, L. T. Cheng, and M. Kang, “A second-order-accurate symmetric discretization of the Poisson equation on irregular domains,” Journal of Computational Physics, 176(1), 205227 (2002).
http://dx.doi.org/10.1006/jcph.2001.6977
19.
19. F. Gibou, R. P. Fedkiw, “A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem,” J. Comput. Phys. 202, 577601 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.07.018
20.
20. Y. T. Ng, H. Chen, C. Min, and F. Gibou, “Guidelines for poisson solvers on irregular domains with Dirichlet boundary conditions using the ghost fluid method,” J. Sci. Comput. 41, 300320 (2009).
http://dx.doi.org/10.1007/s10915-009-9299-8
21.
21. G. H. Shortley and R. Weller, “The numerical solution of Laplace's equation,” J. Appl. Phys. 24, 334348 (1938).
http://dx.doi.org/10.1063/1.1710426
22.
22. Z. Jomaa and C. Macaskill, “The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions,” J. Comput. Phys. 202, 488506 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.07.011
23.
23. Z. Jomaa and C. Macaskill, “Numerical solution of the 2D Poisson equation on an irregular domain with robin boundary conditions,” Proc. CTAC (2008).
24.
24. Z. Jomaa and C. Macaskill, “The Shortley–Weller embedded finite-difference method for the 3D Poisson equation with mixed boundary conditions,” Journal of Computational Physics 229, 36753690 (2010).
http://dx.doi.org/10.1016/j.jcp.2010.01.021
25.
25. T. Fukuchi, “Numerical analysis methods for uniform-property laminar shear flows,” Applied Hydraulics Research Lecture Meeting Report, Japanese Society of Irrigation, Drainage and Reclamation Engineering (2002), pp. 6776, in Japanese.
26.
26. T. Fukuchi, “Numerical analysis of Hagen-Poiseuille flow using square calculation elements,” Lecture Meeting Report of Theoretical and Applied Mechanics, NCTAM (2004), pp. 503504, in Japanese.
27.
27. T. Fukuchi, “Numerical calculation of fully-developed laminar flows in arbitrary cross-sections using finite-difference method,” AIP Advances 1(4), 042109 (2011).
http://dx.doi.org/10.1063/1.3652881
28.
28. T. Fukuchi, “Numerical stability analysis and rapid algorithm for calculations of fully developed laminar flow through ducts using time-marching method,” AIP Advances, 3, 032101 (2013).
http://dx.doi.org/10.1063/1.4794500
29.
29. J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover Publications, Inc. 2001).
30.
30. M. Tanaka, Fundamental numerical analyses, Lecture Note for Numerical Simulation of Partial Differential Equations (Institute of Technology, Gifu University, 2006), in Japanese.
31.
31. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, 1998).
32.
32. K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics for Engineer-Volume I, Engineering Education System (Wichita, Kansas, 1993).
33.
33. G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations, Dover Phoenix Editions (Dover Publications, Inc., 2004).
34.
34. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, 1980).
35.
35. J. M. McDonough, Lectures on Computational Numerical Analysis of Partial Differential Equations (Departments of Mechanical Engineering and Mathematics, University of Kentucky, 2008).
36.
36. G. Golub and C. V. Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press, Baltimore and London, 1996), pp. 531543.
37.
37. R. E. Lynch and J. R. Rice, “A high-order difference method for differential equations,” Math. Comp. 34, 333372 (1980).
http://dx.doi.org/10.1090/S0025-5718-1980-0559190-8
38.
38. M. Li and T. Tang, “A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations,” International Journal for Numerical Methods in Fluids 20, 11371151 (1995).
http://dx.doi.org/10.1002/fld.1650201003
39.
39. T. Kajishima, Numerical Simulation of Turbulent Flows (Yokendo Ltd., 1999). in Japanese.
40.
40. J. Sonoda, “A Study on Large-scale Analysis of Electromagnetic Wave Propagation using Higher-Order FDTD and its Parallel Computation on Cluster Computing System,” Tohoku University Ph.D. thesis (2005), in Japanese.
41.
41. B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids,” Mathematics of Computation 51(184), 699706 (1988).
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
42.
42. F. M. White, Viscous Fluid Flow, 3rd ed. (McGraw-Hill Companies, Inc., 2006).
43.
43. M. M. Yovanovich and Y. S. Muzychka, “Solutions of Poisson equation within singly and doubly connected prismatic domains,” Paper No. 97-3880 (1997) National Heat Transfer Conference (Baltimore, MD, Aug. 10–12 1997).
44.
44. M. Bahrami, M. M. Yovanovich, and J. R. Culham, “A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section,” International Journal of Heat and Mass Transfer 50(13–14), 24922502 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.12.019
45.
45. S. K. Singh, Gravitation Fundamentals (Rice University, Houston, Texas), PDF generated: October 26, 2012, the Connexions URL: http://cnx.org/content/col10459/1.2/
46.
46. H. S. Cohl et al.Developments in determining the gravitational potential using toroidal functions,” Astron. Nachr. 321(5/6), 363372 (2000).
http://dx.doi.org/10.1002/1521-3994(200012)321:5/6<363::AID-ASNA363>3.0.CO;2-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4885555