Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/6/10.1063/1.4886379
1.
1. A. I. Kingon, J. P. Maria, and S. K. Streiffer, Nature 406, 1032 (2000).
http://dx.doi.org/10.1038/35023243
2.
2. W. Jackson, Nature 158, 547 (1946).
3.
3. O. Auciello, Science and Technology of Electroceramic Thin Films (Kluwer Acadamic Publishers, Netherlands, 1995).
4.
4. O. G. Vendik, E. K. Hollmann, A. B. Kozyrev, and A. M. Prudan, J. Superconductivity 12, 235 (1999).
5.
5. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceramics 11, 5 (2003).
http://dx.doi.org/10.1023/B:JECR.0000015661.81386.e6
6.
6. V. M. Ferreira, J. L. Baptista, S. Kamaba, and J. Petzdt, J. mater. Sci. 28, 5894 (1993).
http://dx.doi.org/10.1007/BF00365198
7.
7. L. Li, X. Ding, and Q. Liao, J. alloys compd. 509, 7271 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.04.062
8.
8. J. Lee and C. W. Choi, Jpn. J. Appl. Phys. 38, 3651 (1999).
http://dx.doi.org/10.1143/JJAP.38.3651
9.
9. K. P. Surendran, A. Wu, P. M. Vilarinho, and V. M. Ferreira, J. Appl. Phys. 107, 114112 (2010).
http://dx.doi.org/10.1063/1.3356938
10.
10. B. D. Lee, K. H. Yoon, E. S. Kim, and T. H. Kim, Jpn. J. Appl. Phys. 42, 6158 (2003).
http://dx.doi.org/10.1143/JJAP.42.6158
11.
11. Y. D. Ho and C. L. Huang, J. Am. Ceram. Soc. 96, 2065 (2013).
http://dx.doi.org/10.1111/jace.12439
12.
12. S. Kang, W. Lim, and J. Lee, Integrated Ferroelectrics 31, 97 (2000).
http://dx.doi.org/10.1080/10584580008215644
13.
13. C. L. Huang, S. Y. Wang, Y. B. Chen, B. J. Li, and Y. H. Lin, Current Appl. Phys. 12, 935 (2012).
http://dx.doi.org/10.1016/j.cap.2011.12.012
14.
14. T. Santhosh Kumar, P. Gogoi, A. Perumal, P. Sharma, and D. Pamu, J. Am. Ceram. Soc. (2014).
http://dx.doi.org/10.1111/jace.12851
15.
15. R. A. Young, The Rietveld Method, International Union of Crystallography (Oxford University Press, London, 1996).
16.
16. B. A. Wechsler and R. B. Dreele, Acta. Cryst. B45, 542 (1989).
http://dx.doi.org/10.1107/S010876818900786X
17.
17. L. Li, X. Ding, and Q. Liao, Ceramics International 38, 1937 (2012).
http://dx.doi.org/10.1016/j.ceramint.2011.10.024
18.
18. Y. E. Lee, J. B. Lee, Y. J. Kim, H. K. Yang, J. C. Park, and H. J. Kim, J. Vac. Sci. Technol. A 14, 1943 (1996).
http://dx.doi.org/10.1116/1.580365
19.
19. C. Wang, B. L. Cheng, S. Y. Wang, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, Thin Solid Films 485, 82 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.03.055
20.
20. H. L. Chen and Y. S. Yan, Thin Solid Films 516, 5590 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.035
21.
21. F. K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).
http://dx.doi.org/10.1016/0022-1902(59)80070-1
22.
22. C. L. Huang and C. L. Pan, J. Vac. Soc. Technol. A 22, 2440 (2004).
http://dx.doi.org/10.1116/1.1810164
23.
23. C. L. Huang and Y. B. Chen, Jpn. J. Appl. Phys. 44, 6736 (2005).
http://dx.doi.org/10.1143/JJAP.44.6736
24.
24. D. R. James, Optical Thin Films, (SPIE, Washington, 1987).
25.
25. B. Behara, P. Nayak, and R. N. P. Choudhary, J. Alloys compd. 436, 226 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.07.028
26.
26. A. K. Jonscher, Nature 264, 673 (1977).
http://dx.doi.org/10.1038/267673a0
27.
27. A. Rouahi, A. Kahouli, A. Sylvestre, E. Defay, and B. Yangui, J. Alloys Compd. 529, 84 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.02.137
28.
28. S. Upadhyay, O. Parkash, and D. Kumar, J. Phys. D: Appl. Phys. 37, 1483 (2004).
http://dx.doi.org/10.1088/0022-3727/37/10/011
29.
29. S. Thota, A. Kumar, and J. Kumar, Mater. Sci. Eng. B 164, 30 (2009).
http://dx.doi.org/10.1016/j.mseb.2009.06.002
30.
30. L. Zhang, Appl. Phys. Lett. 87, 022907 (2005).
http://dx.doi.org/10.1063/1.1993748
31.
31. B. Louati, M. Gargouri, K. Guidara, and T. Mhiri, J. Phys. & Chem. Solids 66, 762 (2005).
http://dx.doi.org/10.1016/j.jpcs.2004.09.011
32.
32. S. A. El Hakim, F. A. El Whab, A. S. Mohamed, and M. F. Kotkata, Phys. Stat. Solid A 198, 128 (2003).
http://dx.doi.org/10.1002/pssa.200305959
33.
33. K. Frunk, J. Prog. Solid State Chem. 22, 111 (1993).
http://dx.doi.org/10.1016/0079-6786(93)90002-9
34.
34. A. P. Barranco, M. P. G. Amador, A. Huanosta, and R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998).
http://dx.doi.org/10.1063/1.122360
35.
35. A. A. Ahmed Youseef, Z. Naturforsch 57a, 263 (2002).
36.
36. S. Mahboob, G. Prasad, and G. S. Kumar, Bull. Mater. Sci. 29, 35 (2006).
http://dx.doi.org/10.1007/BF02709353
37.
37. Y. B. Chen and C. L. Huang, Surf. Coat. Technol. 201, 654 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.12.033
38.
38. J. C. Maxwell, Electricity and Magnetism (Oxford University press, Oxford, 1929).
39.
39. F. M. Pontes, E. R. Leite, and E. Longo, Appl. Phys. Lett. 76, 2433 (2000).
http://dx.doi.org/10.1063/1.126367
40.
40. T. Li, G. Wang, K. Li, N. Sama, D. Remiens, and X. Dong, J. Am. Ceram. Soc. 96, 787 (2013).
http://dx.doi.org/10.1111/jace.12047
41.
41. L. Z. Cao, W. Y. Fu, S. F. Wang, Q. Wang, Z. H. Sun, H. Yang, B. L. Cheng, H. Wang, and Y. L. Zhou, J. Phys. D: Appl. Phys. 40, 2906 (2007).
http://dx.doi.org/10.1088/0022-3727/40/9/036
42.
42. D. Pamu, K. Sudheendran, M. Ghanashyam Krishna, and K. C. James Raju, Mat.Sci. & Eng. B 168, 208 (2010).
http://dx.doi.org/10.1016/j.mseb.2009.12.028
43.
43. T. Santhosh Kumar, R. Bhuyan, and D. Pamu, Appl. Surf. Sci. 263,184 (2013).
http://dx.doi.org/10.1016/j.apsusc.2012.09.168
44.
44. M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys. 82, 3482 (1997).
http://dx.doi.org/10.1063/1.365665
45.
45. B. Taeev, Physics of Dielectric Materials (Mir publications, Moscow, 1975).
46.
46. B. D. Lee, K. H. Yoon, E. S. Kim, and T. H. Kim, Jpn. J. Appl. Phys. 42, 6158 (2003).
http://dx.doi.org/10.1143/JJAP.42.6158
47.
47. L1. P. Bhattacharya, T. Komeda, K. Park, and Y. Nishioika, Jpn. J. Appl. Phys. 32, 4103 (1993).
http://dx.doi.org/10.1143/JJAP.32.4103
48.
48. C. L. Huang and Y. B. Chen, Jpn. J. Appl. Phys. 44, 6736 (2005).
http://dx.doi.org/10.1143/JJAP.44.6736
49.
49. M. Abazari and A. Safari, Appl. Phys. Lett. 97, 262902 (2010).
http://dx.doi.org/10.1063/1.3531575
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/6/10.1063/1.4886379
Loading
/content/aip/journal/adva/4/6/10.1063/1.4886379
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/6/10.1063/1.4886379
2014-06-30
2016-12-10

Abstract

We report the structural, dielectric and leakage current properties of Co doped MgTiO thin films deposited on platinized silicon (Pt/TiO/SiO/Si) substrates by RF magnetron sputtering. The role of oxygen mixing percentage (OMP) on the growth, morphology, electrical and dielectric properties of the thin films has been investigated. A preferred orientation of grains along (110) direction has been observed with increasing the OMP. Such evolution of the textured growth is explained on the basis of the orientation factor analysis followed the Lotgering model. (Mg Co)TiO ( = 0.05) thin films exhibits a maximum relative dielectric permittivity of = 12.20 and low loss (tan δ ∼ 1.2 × 10−3) over a wide range of frequencies for 75% OMP. The role of electric field frequency () and OMP on the ac-conductivity of (Mg Co)TiO have been studied. A progressive increase in the activation energy (E) and relative permittivity values have been noticed up to 75% of OMP, beyond which the properties starts deteriorate. The I-V characteristics reveals that the leakage current density decreases from 9.93 × 10−9 to 1.14 × 10−9 A/cm2 for OMP 0% to 75%, respectively for an electric field strength of 250 kV/cm. Our experimental results reveal up to that OMP ≥ 50% the leakage current mechanism is driven by the ohmic conduction, below which it is dominated by the schottky emission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/6/1.4886379.html;jsessionid=vDMx-PfZtPNyNVyuK47jOdkn.x-aip-live-03?itemId=/content/aip/journal/adva/4/6/10.1063/1.4886379&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/6/10.1063/1.4886379&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4886379'
Right1,Right2,Right3,