Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4886774
1.
1. J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).
http://dx.doi.org/10.1103/PhysRev.74.230
2.
2. G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, Appl. Phys. Lett. 97, 022107 (2010).
http://dx.doi.org/10.1063/1.3459959
3.
3. F. Vega, R. Serna, C. N. Afonso, D. Bermejo, and G. Tejeda, J. Appl. Phys. 75, 7287 (1994).
http://dx.doi.org/10.1063/1.356663
4.
4. T. Sameshima, H. Watakabe, H. Kanno, T. Sadoh, and M. Miyao, Thin Solid Films 487, 67 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.01.037
5.
5. G. Fisicaro, A. La Magna, G. Piccitto, and V. Privitera, Microelectron. Eng. 88, 488 (2011).
http://dx.doi.org/10.1016/j.mee.2010.09.014
6.
6. M. Bosi and G. Attolini, Prog. Cryst. Growth Charact. Mater. 56, 146 (2010).
http://dx.doi.org/10.1016/j.pcrysgrow.2010.09.002
7.
7. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H. von Känel, Semicond. Sci. Technol. 21, 775 (2006).
http://dx.doi.org/10.1088/0268-1242/21/6/011
8.
8. J. M. Hartmann, A. M. Papon, V. Destefanis, and T. Billon, J. Cryst. Growth 310, 5287 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.08.062
9.
9. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, J. Vac. Sci. Technol. B 10, 1807 (1992).
http://dx.doi.org/10.1116/1.586204
10.
10. Y. H. Tan and C. S. Tan, Thin Solid Films 520, 2711 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.11.046
11.
11. E. V. Johnson, G. Patriarche, and P. Roca i Cabarrocas, Appl. Phys. Lett. 92, 103108 (2008).
http://dx.doi.org/10.1063/1.2895636
12.
12. M. Labrune, M. Moreno, and P. Roca i Cabarrocas, Thin Solid Films 518, 2528 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.09.143
13.
13. M. Labrune, X. Bril, G. Patriarche, L. Largeau, O. Mauguin, and P. Roca i Cabarrocas, EPJ Photovolt. 3, 30303 (2012).
http://dx.doi.org/10.1051/epjpv/2012010
14.
14. D. J. Eaglesham, H.-J. Gossmann, and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1227
15.
15. C. W. Teplin, K. Alberi, M. Shub, C. Beall, I. T. Martin, M. J. Romero, D. L. Young, R. C. Reedy, P. Stradins, and H. M. Branz, Appl. Phys. Lett. 96, 201901 (2010).
http://dx.doi.org/10.1063/1.3422474
16.
16. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
17.
17. P. Roca i Cabarrocas, J. Vac. Sci. Technol. Vac. Surf. Films 9, 2331 (1991).
http://dx.doi.org/10.1116/1.577318
18.
18. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.985
19.
19. S. De Wolf and M. Kondo, Appl. Phys. Lett. 90, 042111 (2007).
http://dx.doi.org/10.1063/1.2432297
20.
20. H. Fujiwara and M. Kondo, J. Appl. Phys. 101, 054516 (2007).
http://dx.doi.org/10.1063/1.2559975
21.
21. V. T. Bublik, S. S. Gorelik, A. A. Zaitsev, and A. Y. Polyakov, Phys. Status Solidi B 65, K79 (1974).
http://dx.doi.org/10.1002/pssb.2220650249
22.
22. M. Moreno, G. Patriarche, and P. Roca i Cabarrocas, J. Mater. Res. 28, 1626 (2013).
http://dx.doi.org/10.1557/jmr.2013.52
23.
23. M. Moreno, M. Labrune, and P. Roca i Cabarrocas, Sol. Energy Mater. Sol. Cells 94, 402 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.10.016
24.
24. D. Dentel, J. Bischoff, T. Angot, and L. Kubler, Surf. Sci. 402–404, 211 (1998).
http://dx.doi.org/10.1016/S0039-6028(97)01017-0
25.
25. M. Halbwax, C. Renard, D. Cammilleri, V. Yam, F. Fossard, D. Bouchier, Y. Zheng, and E. Rzepka, J. Cryst. Growth 308, 26 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.07.047
26.
26. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).
http://dx.doi.org/10.1063/1.121584
27.
27. D. Shahrjerdi, B. Hekmatshoar, S. Bedell, M. Hopstaken, and D. Sadana, J. Electron. Mater. 41, 494 (2012).
http://dx.doi.org/10.1007/s11664-011-1807-6
28.
28. P. Roca i Cabarrocas, K. H. Kim, R. Cariou, M. Labrune, E. V. Johnson, M. Moreno, A. T. Rios, S. Abolmasov, and S. Kasouit, MRS Proc. 1426, 319 (2012).
http://dx.doi.org/10.1557/opl.2012.1094
29.
29. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
http://dx.doi.org/10.1063/1.125187
30.
30. P. B. Hirsch, Electron Microscopy of Thin Crystals (Butterworths, 1965).
31.
31. G. Capellini, M. De Seta, Y. Busby, M. Pea, F. Evangelisti, G. Nicotra, C. Spinella, M. Nardone, and C. Ferrari, J. Appl. Phys. 107, 063504 (2010).
http://dx.doi.org/10.1063/1.3327435
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4886774
Loading
/content/aip/journal/adva/4/7/10.1063/1.4886774
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4886774
2014-07-01
2016-12-06

Abstract

We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 106 cm−2 are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4886774.html;jsessionid=R2M-ueAyr2wxTlvyDxmfRTBE.x-aip-live-02?itemId=/content/aip/journal/adva/4/7/10.1063/1.4886774&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4886774&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4886774'
Right1,Right2,Right3,