Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Pile, Nature Materials 9, S18 (2010).
2. E. Ozbay, Science 311, 189 (2006).
3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
4. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005).
5. S. Kawata, Y. Inouye, and P. Verma, Nat. Photonics 3, 388 (2009).
6. W. Srituravanich, N. Fang, C. Sun, Qi Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
7. E. Battal and A. K. Okyay, Opt. Lett. 38, 983 (2013).
8. S-W Qu and Z-P Nie, Sci. Reports 3, 3172 (2013)
9. K. Chen, R. Adato, and H. Altug, ACS Nano 6, 7998 (2012).
10. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramili, and H. Altug, Proc. Natl. Acad. Sci. 106, 19227 (2009).
11. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
12. F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, Opt. Express 21, 7196 (2013).
13. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, Opt. Express 19, 17413 (2011).
14. J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
15. G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).
16. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, ACS Nano 5, 9161 (2011).
17. G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).
18. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, IEEE J. Select. Topics Quantum Electron. 19, 4601907 (2013).
19. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Proc. Natl. Acad. Sci. 109, 8834 (2012).
20. L. E. Aygun, F. B. Oruc, F. B. Atar, and A. K. Okyay, IEEE Photonics Journal 5, 2200707 (2013).
21. S. Alkis, B. Tekcan, A. Nayfeh, and A. K. Okyay, J. Opt. 15, 205002 (2013).
22. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B 86, 235147 (2012).
23. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207 (2002).
24. E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, Semicond. Sci. Technol. 27, 074011 (2012).
25. P. Berini, Opt. Express 14, 13030 (2006).
26. F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt Express 14, 7 (2006).
27. G. Veronis and S. Fan, J. Lightw. Technol. 25, 2511 (2007).
28. M. Bora, B. J. Fasenfest, E. M. Behymer, A. S-P. Chang, H. T. Nguyen, J. A. Britten, C. C. Larson, J. W. Chan, R. R. Miles, and T. C. Bond, Nano Lett. 10, 2832 (2010).
29. Y. Chen, Z. Zhang, and M. Yu, Appl. Phys. Lett. 103, 061109 (2013).
30. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quant. Electr. 33, 2038 (1997).
31. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
32. E. Battal, S. Bolat, M. Y. Tanrikulu, A. K. Okyay, and T. Akin, “Atomic Layer Deposited Zinc-Oxide as Tunable Uncooled Infrared Microbolometer MaterialPhysica Status Solidi A.

Data & Media loading...


Article metrics loading...



Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd