Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4887520
1.
1. D. Pile, Nature Materials 9, S18 (2010).
2.
2. E. Ozbay, Science 311, 189 (2006).
http://dx.doi.org/10.1126/science.1114849
3.
3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
http://dx.doi.org/10.1038/35570
4.
4. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005).
http://dx.doi.org/10.1364/OL.30.001186
5.
5. S. Kawata, Y. Inouye, and P. Verma, Nat. Photonics 3, 388 (2009).
http://dx.doi.org/10.1038/nphoton.2009.111
6.
6. W. Srituravanich, N. Fang, C. Sun, Qi Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
http://dx.doi.org/10.1021/nl049573q
7.
7. E. Battal and A. K. Okyay, Opt. Lett. 38, 983 (2013).
http://dx.doi.org/10.1364/OL.38.000983
8.
8. S-W Qu and Z-P Nie, Sci. Reports 3, 3172 (2013)
9.
9. K. Chen, R. Adato, and H. Altug, ACS Nano 6, 7998 (2012).
http://dx.doi.org/10.1021/nn3026468
10.
10. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramili, and H. Altug, Proc. Natl. Acad. Sci. 106, 19227 (2009).
http://dx.doi.org/10.1073/pnas.0907459106
11.
11. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
12.
12. F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, Opt. Express 21, 7196 (2013).
http://dx.doi.org/10.1364/OE.21.007196
13.
13. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, Opt. Express 19, 17413 (2011).
http://dx.doi.org/10.1364/OE.19.017413
14.
14. J. Hao, L. Zhou, and M. Qiu, Phys. Rev. B 83, 165107 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165107
15.
15. G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).
http://dx.doi.org/10.1002/adma.201205076
16.
16. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, ACS Nano 5, 9161 (2011).
http://dx.doi.org/10.1021/nn203406f
17.
17. G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).
http://dx.doi.org/10.1364/OME.1.001090
18.
18. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, IEEE J. Select. Topics Quantum Electron. 19, 4601907 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2255586
19.
19. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Proc. Natl. Acad. Sci. 109, 8834 (2012).
http://dx.doi.org/10.1073/pnas.1121517109
20.
20. L. E. Aygun, F. B. Oruc, F. B. Atar, and A. K. Okyay, IEEE Photonics Journal 5, 2200707 (2013).
http://dx.doi.org/10.1109/JPHOT.2013.2250274
21.
21. S. Alkis, B. Tekcan, A. Nayfeh, and A. K. Okyay, J. Opt. 15, 205002 (2013).
http://dx.doi.org/10.1088/2040-8978/15/10/105002
22.
22. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B 86, 235147 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235147
23.
23. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075207
24.
24. E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, Semicond. Sci. Technol. 27, 074011 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074011
25.
25. P. Berini, Opt. Express 14, 13030 (2006).
http://dx.doi.org/10.1364/OE.14.013030
26.
26. F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt Express 14, 7 (2006).
http://dx.doi.org/10.1364/OPEX.14.000007
27.
27. G. Veronis and S. Fan, J. Lightw. Technol. 25, 2511 (2007).
http://dx.doi.org/10.1109/JLT.2007.903544
28.
28. M. Bora, B. J. Fasenfest, E. M. Behymer, A. S-P. Chang, H. T. Nguyen, J. A. Britten, C. C. Larson, J. W. Chan, R. R. Miles, and T. C. Bond, Nano Lett. 10, 2832 (2010).
http://dx.doi.org/10.1021/nl1008376
29.
29. Y. Chen, Z. Zhang, and M. Yu, Appl. Phys. Lett. 103, 061109 (2013).
http://dx.doi.org/10.1063/1.4817973
30.
30. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quant. Electr. 33, 2038 (1997).
http://dx.doi.org/10.1109/3.641320
31.
31. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.035407
32.
32. E. Battal, S. Bolat, M. Y. Tanrikulu, A. K. Okyay, and T. Akin, “Atomic Layer Deposited Zinc-Oxide as Tunable Uncooled Infrared Microbolometer MaterialPhysica Status Solidi A.
http://dx.doi.org/10.1002/pssa.201431195
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4887520
Loading
/content/aip/journal/adva/4/7/10.1063/1.4887520
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4887520
2014-07-07
2016-12-05

Abstract

Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4887520.html;jsessionid=2inyQNir5PeZSsFFYMHSv5e4.x-aip-live-02?itemId=/content/aip/journal/adva/4/7/10.1063/1.4887520&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4887520&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4887520'
Right1,Right2,Right3,